Quantification of Health and Productivity of Salt Marshes Using Satellite Data

Hyun Jung ("J.") Cho In collaboration with D. Mishra, UGA

Professor, Department of Integrated Environmental Science Bethune-Cookman University

> choh@cookman.edu 386 481 2793

The Deepwater Horizon oil spill

- 20 April 2010
 - Continued flowing for three months
- Largest off-shore oil spill in U.S. history
 - Estimated 206 million gallons of crude oil
- First major U.S. oil spill to affect marsh/wetland habitat

Impact on Salt Marsh Habitat

- Particularly damaging to marshland and marine habitat
 - Loss in green biomass (browning)
 - Reduction in photosynthetic activity
 - Impact from cleaning efforts
 - Burning
 - Flushing
 - Skimming

Objectives

- Estimate short term impact of the oil spill on salt marsh habitat by evaluating marsh biophysical characteristics
- Using remote sensing data, develop models and products that will facilitate monitoring restoration efforts of the coastal salt marsh habitat

Study Area

Louisiana Estuarine and Marine Salt Marshes

Area - 4554.7 sq. km

Vegetation: Spartina patens Spartina alterniflora Juncus roemerianus Distichlis spicata Salicornia virginica

🛧 Sites

Field Data

• 69 locations; Aerial and Ground Survey

- Top of Canopy (TOC) hyper-spectral reflectance data (Ocean optics USB 4000 Spectroradiometer and ASD sensor)
- Vegetation Fraction (Olympus E-502 Digital Camera)
- Leaf Area Index (LAI Plant Canopy Analyzer 2000)
- Leaf level chlorophyll content (Minolta SPAD 502)
- Canopy level chlorophyll content calculating as Chl_{upper} × LAI
- Above ground green biomass (gm/ft²)

Field Methods

Dual Sensor Approach

L = upwelling radiance E = downwelling irradiance p = remote sensing reflectance (sr⁻¹)

Data acquisition

Sensor-Target : 16 ft IFOV: 2.2 meter

~2m

Field Methods: Canopy Chlorophyll

Leaf Area Index (LAI)

Leaf Level Chlorophyll

Canopy Chl = Leaf Level CHL * LAI

Leaf Area Index (Foliage area/Ground area)

The measurement of LAI is of fundamental importance in ecological research because LAI is a measure of plant growth; it directly affects the interception and absorption of light by the canopy and it influences the primary productivity of vegetation.

Vegetation Fraction (%)

Vegetation Fraction (VF) = ratio of green vegetation area to ground area

Vegetation fraction is obtained as a ratio of the number of vegetation pixels to the total number of pixels in the image, expressed in percent

VF = 86%

VF = 42%

Field Methods

1. Canopy Height

 Average of 5 measurements within a 1m radius of the scan center

Biomass sample collection

2. Green Biomass

- Destructive sampling of vegetation after reflectance acquisition
 - Samples were sorted, oven dried, and weighed

Field Data

Objective: Measure *in-situ* canopy-level reflectance of dominant vegetation

- a) Develop spectral models to characterize selected biophysical parameters of each vegetation species individually
- b) Develop a single model to characterize biophysical parameters for the entire marsh regardless of speciation

Applied Vegetation Indices (VIs) for GBM estimation per species

Vegetation Index	Application	Formula	Reference
Normalized Difference Vegetation Index (NDVI)	Biomass, Chl, VF	$\frac{NIR - Red}{NIR + Red}$	Rouse et al., 1974
Wide Dynamic Range Vegetation Index (WDRVI)	Chl, LAI, VF	$\frac{0.2NIR-Red}{0.2NIR+Red}$	Gitelson, 2004
Enhanced Vegetation Index (EVI)	Biomass, LAI	$\frac{2.5NIR-Red}{NIR+6Red-7.5Blue}$	Huete, 2002
Chlorophyll Index – Green (Cl _{green})	Chl, GPP, VF	$\left(\frac{NIR}{Green}\right) - 1$	Gitelson, 2006
Chlorophyll Index – Red Edge (Cl _{red edge})	Chl, GPP, VF	$\left(\frac{NIR}{Red \ Edge} ight) - 1$	Gitelson, 2006

Applied 15 VIs

- 5 models with 3 variants of each model using 760, 800, and 1100nm for NIR

Weighted Difference Biophysical Index (WDBI): best correlated when working with all species

Satellite Data

Multi-temporal LANDSAT TM 2009 - 2010

Dates	2009	2010
April	4	7
May	6	9
June	7	3
July	9	5
August	3	6
September	4	7
October	13	9

Model Calibration

 $WDRVI = (\alpha^* \lambda_{NIR} - \lambda_{Red}) / (\alpha^* \lambda_{NIR} - \lambda_{Red})$

Model Validation

Results

Results: Phenology

Fringing Marshes

Interior Marshes

Preliminary Results: MODIS

Louisiana

July 4 LAI

Preliminary Results: MODIS

Conclusion and Future Research

- This study successfully delineate the critical hotspots and the pattern of marsh stress and so that prioritization of restoration areas can be performed
- Tune models with more local data
- Apply the approach on the marsh degradation caused by other factors

This project was funded by National Science Foundation RAPID program (Award # 1050500) and Northern Gulf Institute-Mississippi State University (Award # 306896)

