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INTRODUCTION

The Florida Keys are a low lying archipelago of Pleistocene limestone islands that
extends off the southeastern tip of the Florida Peninsula in a southwest direction from
Biscayne Bay to Key West. They stretch a total distance of 240 km (Fig. 1, Halley et al.,
1995), enclosing Florida Bay to the north. They are typically divided into the Upper Keys,
which are oriented parallel to the shelf edge and Lower Keys, which lie perpendicular to the
shelf edge. The Upper Keys are considered to be those north of Bahia Honda and are
composed of Key Largo Limestone. Key Largo Limestone consists of ancient hermatypic

corals with intra- and interbedded calcarenites and thin beds of quartz sands (Halley et al.,
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1995). The formation is extremely porous and permeable due conduits and interconnected
pore spaces created by ancient coral growth and meteoric diagenesis.

On the southern tip of Big Pine Key, Key Largo limestone grades into the Miami
oolite facies that is characteristic of the Lower Keys. Miami oolite consists of well-sorted
ooids with varying amounts of skeletal material (corals, echinoids, mollusks, and algae)
and some quartz sand (Halley et al., 1995). On Big Pine Key, the oolite has a maximum
thickness of approximately 6 m and is underlain by Key Largo Limestone. The Lower
Keys are the remnants of a oolitic shoal or tidal bar system (Hoffmeister et al., 1967;
Halley and Evans, 1983) deposited during the Pleistocene. The Miami oolite is much less
permeable than the Key Largo limestone of the Upper Keys.

Florida Bay is a shallow lagoon bordered by the Keys and the Florida mainland. It
covers an area of approximately 1800 km? and has an average depth of about one meter.
Its western margin is open to the Gulf of Mexico. Shallow carbonate mud banks divide the
bay into basins, restrict circulation, and attenuate tidal influences from the Gulf (Robblee et
al., 1991). Most freshwater enters the bay from the north through Taylor Slough or as
sheet flow from the Everglades generated by local precipitation. Salinity in the bay
oscillates between brackish and hypersaline. Extensive seagrass beds can be found in the
bay. In 1989, Zieman et al. estimated that seagrasses covered more than 80% of the bay.
Many commercially important types of fish and crustaceans can be found in the bay. Some
are year round residences, others depend on seagrass beds as a nursery ground (Robblee et
al., 1991).

Around 1987, water quality in Florida Bay began deteriorating (Robblee et al.
1991). The clear and quiescent waters that once characterized the Bay began appearing
green and turbid. Algae blooms and seagrass die-offs became commonplace. With
seagrasses’ death, the muddy bottom sediments of Florida Bay are more easily disturbed.

Newly suspended sediments release nutrients to the water column which in turn fuels
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microalgae blooms. As turbidity and algal densities increase, light penetration to the
bottom decreases and prevents seagrasses from recovering which in turn leads to a less
stable bottom. The scenario could lead to a shift from a system dominated by benthic
primary production to one dominated by water column photosynthesis. The scientific
community generally agrees that this drastic change can be attributed to elevated salinity
and/or increased nutrient loading resulting from the agricultural development and rapid
urbanization of south Florida and the Florida Keys (EPA, 1991). Many facets of Florida
Bay are now being studied to aid in the development of a model to characterize the
physical, chemical, and biological conditions of the bay. This model will be used to predict
what restoration steps could be most beneficial to the Bay. It is important that this model
consider all significant nutrient sources for the bay.

Groundwater discharge has been documented as being highly significant for
nutrient supply in some coastal areas. For example, Valiela et al. (1978), Valiela and Teal
(1979), and Valiela et al. (1990) have shown that groundwater inputs of nitrogen are very
important to the overall nitrogen economy of salt marshes in Massachusetts. In follow-up
studies of Great South Bay, Capone and Bautista (1985) and Capone and Slater (1990)
showed that SGD is a significant source (250%) of nitrate, as well as freshwater, to the
bay. Nitrogen-rich groundwater is also suspected of nourishing Cladophora algal mats in
Harrington Sound, Bermuda (Lapointe and O'Connell, 1989). SGD is particularly
important in these cases because shallow groundwaters are often enriched in nitrogen,
usually because of contamination from septic tanks.

In a more pristine environment, submarine springs were shown to cause
measurable dilution of salinity and enrichment of nitrogen in Discovery Bay, Jamaica
(D'Elia et al., 1981). Groundwater was also shown to be a significant component of
terrestrial nutrient and freshwater loading to Tomales Bay, California (Oberdorfer et al.

1990). In an excellent review of the subject, Johannes (1980) points out that SGD delivers
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several times as much nitrate to coastal waters near Perth, Australia, than does river runoff.
Johannes (1980) states that "it is ... clear that submarine groundwater discharge is
widespread and, in some areas, of greater ecological significance than surface runoff."
Indeed, there are some areas, such as the west coast of the island of Hawaii (Kay et al.,
19777) and parts of the Yucatan Peninsula (Hanshaw and Back, 1980), where virtually all
fresh water entering the sea is in the form of submarine discharge.

The above studies have addressed the case of a freshwater aquifer in contact with a
coastal marine or lake environment. The situation in the Florida Keys is different in that
most of the aquifer is saline to hyper-saline and the driving force is thought to be tidal
rather than topographic. Therefore, the direction of groundwater flow beneath the Keys
must oscillate as the fluctuating Atlantic tides create a differential head with respect to
Florida Bay where tides are extremely damped. When the tide is high in the Atlantic, there
is a negative hydraulic head associated with the wells on the Atlantic side and water is
pushed into the Keys. Simultaneously, on the Bay side wells, there is a positive head as
water is pushed from the Keys into the Bay. When the tide is low on the Atlantic the
situation reverses and water is sucked from the Bay and transported into the Atlantic.
Another study showed that sea level in Florida Bay is higher than on the Atlantic side of
Keys more than 50% of the time (Halley et al., 1995). Higher water levels in the Bay
suggests that net groundwater flow is toward the Atlantic.

The majority of the aquifer underlying the Keys is saline. Meteoric fresh water
lenses do exist on some of the lower Keys due to the lower permeability of the Miami oolite
compared to the Key Largo limestone of the upper Keys (Vacher et al., 1992).
Approximately 600 sewage disposal (injection) wells ranging in depth from 10-30 m have
been installed in the Florida Keys. In addition, there are also some 24,000 septic tanks and

an estimated 5,000 illegal cess pools (Shinn et al., 1994) that can contribute to elevated

nutrient levels in shallow groundwaters. The USEPA calculates that approximately 897 kg
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of nitrogen and 215 kg of phosphate are put into the subsurface groundwaters daily by
these three methods of waste disposal (USEPA, 1996). Lapointe et al. (1990) have
shown significant nutrient enrichment (up to 5000-fold) in groundwaters contiguous to
septic tanks on Big Pine Key. In another study, Lapointe and Clark (1992) showed that
phosphate and dissolved inorganic nitrogen levels were elevated in canals and some
nearshore waters of the Keys.

Canals may be particularly impacted by sewage-derived nutrients due to their low
flushing rates and their direct contact with contaminated groundwaters. Paul et al. (1995)
conducted two tracer tests on Key Largo. They found that bacteriophages flushed into a
toilet and injected into a simulated injection well all showed up in a nearby canal within 11
hours. Estimated rates of transport ranged from 0.57 to 24.2 m/h. Paul et al. (1997)
repeated the simulated injection well portion of this experiment at this same location and
found similar transport rates (2.5 to 35 m/hr). The greatest tracer concentrations in canals
and wells corresponded with major stages of the tide. Some stations showed the greatest
viral tracer concentration during high tide, while others showed a maximum at low tide.
They speculated that the low tides enable drainage of the tracer and wastewater from the
limestone, while high tides move the material back into the Keys, to be drained by another
low tide.

In their 1997 study, Paul et al. also injected viral tracers into the class V injection
well located at the Keys Marine Lab on Long Key (Middle Keys). They found slower rates
of groundwater transport (0.12 to 2.0 m/hr) than those in Key Largo with the greatest
movement being in the direction of the Atlantic Ocean. Some movement of the tracer was
also observed toward Florida Bay. Movement of groundwater at this site seemed to be
mostly along the north/south axis of Long Key with no indication of tidal pumping.

Surface marine waters showed traces of the bacteriophages after 53 hours. They attributed




this slower movement at the Long Key site to differences in geology, rate and force of tidal
pumping, and/or the lack of numerous canals cut into the limestone.

This evidence suggests that significant quantities of sewage from on-site disposal
systems may reach the surficial waters of the Florida Keys within hours to days. To date,
there have been no studies examining bacterial utilization of this waste in situ (water
polishing), adsorption of phosphate by the carbonate matrix, or the dilution of the sewage
reaching the surface. Dilution, however, would not necessarily reduce the flux of nutrients
to the surface waters. If the waste water plume reaches surface waters rapidly with a little
dilution or polishing or if the flux into surface waters is high then human and ecosystem
health could be at risk and different wastewater disposal methods would be needed.

The purpose of this study was two-fold: (1) perform a preliminary evaluation of
the significance of groundwater discharge as a source of nutrients to Florida Bay and the
reef tract using natural tracers; and (2) use artificial tracers obtain information on the fate of
wastewater in the Florida Keys. As for the first objective, we have attempted to locate
areas in the bay where groundwater seepage is more pronounced by reconnaissance
surveys of the concentrations of radon and methane in the bay waters. These trace gases
appear to function as natural indicators of submarine groundwater discharge into standing
bodies of water due to higher concentrations in the groundwater (Cable et al., 1996; Bugna
etal,, 1996). Radon is typically elevated in groundwater because of production from
dissolved radium and radium within the aquifer matrix, while methane is produced from the

decay of organic matter. While both processes occur within the aquifer and result in
elevated tracer concentrations within groundwaters, the production of each is completely
independent of the other. Nutrient samples were collected and analyzed from surface and
porewaters within the Bay, along the reef tract, and in some springs, wells, and canals.. In

addition, the natural abundance of 15N in algae collected at various sample sites will help

serve as a potential indicator of nutriet inputs from groundwater (McClelland et al., 1997;
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Fry, 1994; Sweeny et al., 1980). Algae with a groundwater input of nutrient N maybe
enriched in the heavy isotope (+10-20%o0) due to denitrification in the suboxic surface.

The second objective focuses on the determination of directions and rates of
groundwater transport in the Florida Keys and determination of dilution vof contaminated
groundwaters prior to its input into surface waters. Also, it was our hope to determine how
transport and dilution differ in the Keys due to varying locations and different waste
disposal methods (i.e. septic tanks vs. injection wells). To examine the problem, we used
two artificial tracers, sulfur hexafluoride (SFg) and radio-iodine (I-131) to monitor
groundwater movement in the Keys.

SFe is a very stable, slightly water soluble gas that has primarily been used since
the 1960's as a gaseous electrical insulator (Wanninkhof et al., 1991). Due to its
perfluorinated structure, SFg is an electrophilic compound that which reacts readily with
free electrons, but virtually nothing else. Therefore, it can be measured at very low levels
with a gas chromatograph equipped with an electron capture detector (GC-ECD). It has
been successfully utilized to study gas exchange rates in lakes (Wanninkhof et al., 1985,
1987) and in the North Sea (Watson et al., 1991). It has also been used to examine vertical
mixing rates in the Santa Monica Basin (Watson et al., 1991). It is well suited as a
groundwater tracer because it is nontoxic, has extremely low background concentrations
(0.05 M, Watson and Liddicoat, 1985) and has been shown to be a conservative tracer in
saturated sandy media with low organic content (Wilson and Mackay, 1993).

Radio-iodine is a water soluble isotope of iodine that has been used in hospitals for
decades to treat thyroid cancer. All things considered, radio-iodine is an excellent
groundwater tracer for several reasons: (1) the detection limits are extremely low, especially
on an atomic (molar) basis; (2) the overall sensitivities are extremely high; (3) it has a
relatively short half-life (8.04 days) so it will completely disappear from the systemin a

short time period and (4) it is considered conservative under the conditions present in the
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limestone matrix of the Keys. Due to the high cost of I-131; however, this tracer was only

used in one experiment to confirm results obtained using SFg as a tracer.
METHODS

Natural Tracers

Radon and Methane Sampling

Samples for tracer analysis were collected at over 200 stations in Florida Bay and
along the reef tract between August, 1995 and Augusf, 1997. Radon samples were
collected at each station using a peristaltic pump and 4-liter evacuated bottles. Standing
water was purged from the hose at each depth prior to filling the sampling bottles, and the
bottles were immediately sealed to prevent gas loss. Radon gas was extracted and counted
using a modified emanation technique described by Mathieu et al. (1988). After radon
stripping and transfer into alpha scintillation cells, counting was performed using Ludlum
flask counters. After the initial radon analysis, the samples were sealed and stored for at
least five days for 222Rn ingrowth and then sparged again in order to determine the 226Ra
activity. "Excess" (unsupported) radon was determined as the difference between the
"total" 222Rn in samples and the supported 222Rn, assumed to be equal to the 226Ra
activity. These values were decay-corrected back to the time of sampling in order to assess
the in situ excess radon concentrations.

Methane samples were collected in Wheaton BOD bottles and stored on ice until
analysis. Ethylene was also quantified to look for possible trends with other tracers. Both
gases could be analyzed from the same sample. Upon return to the laboratory, water
samples were transferred to 50-mL disposable syringes which were pre-flushed with
nitrogen. An extraction volume of 10 mL of N2 to 40 mL of water was added to each

syringe, and the methane/ethylene extracted via headspace equilibration. Samples were run
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on a Shimadzu flame ionization gas chromatograph equipped with a 2-m stainless steel
column packed with Poropack Q (McAuliffe, 1971).

Samples for 222Rn, CHy4 and CyHy in groundwater were also obtained from monitor
wells at depths ranging from 5 to 60 meters. The locations of these sites were primarily
within Florida Bay, onshore and offshore of Key Largo, and at the Key Marine Laboratory
located on Long Key (Figure 1).

I5N

Algae samples collected from sites in Florida Bay and along the reef tract were sealed
in plastic bags and frozen. Upon return to the University, samples were thawed, dried,
and ground to a fine powder. Preweighed powdered samples, analysed by Isotope
Services, Inc., were encapsulated in tin foil in duplicate and placed in a Carlo-Erba NA
1500 elemental analyzer. The elemental analyzer combusts the sample and yeilds a pulse of
pure nitrogen using gas chromatograph column. This pulse of pure nitrogen gas is
sampled by a VG-Isomass mass spectrometer for 15N isotope analysis. The mass

spectrometer admits a reference gas into the helium carrier stream and is measured along

with every sample analysis.

Seepage

Direct measurements of groundwater seepage were made using an instrument
design modified from Lee (1977). The “seepage meter” is simply a chamber implanted in
the bottom sediments which has an open port where a plastic bag can be attached to collect
seepage over measured time intervals. All seepage meters used in this study were either
placed in areas which had sufficient sediment to provide a seal between the meter and
surrounding sediment or directly cemented to the hard-bottom surface (cemented meters

were placed by Gene Shinn et al.). Four liter plastic bag “collectors” were used and were
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prefilled with 1000 mL of bay water to prevent short-term artifacts (Shaw and Prepas,
1989). Addition of an initial 1000 mL of water allows for measurement of negative
seepage, i.e., recharge into the underground aquifer. The lower reliable limit of
measurement for seepage meters depends upon the length of deployment and the conditions
under which the sampling occurs—based on our experience using these meters, we

normally expect a lower useful limit of 3-5 mL/m2-min (Cable et al., 1997).

Artificial Tracers
Experimental Design and Sites

Three basic types of experiments were carried out using artificial tracers to evaluate
different wastewater disposal methods at varying locations in the Keys. The different
experiments examined were: (1) septic tanks in Miami oolite, Big Pine Key, (2) a simulated
septic tank in Key Largo Limestone, and (3) a class V injection well in Key Largo
Limestone. SF6 was used in all of these experiments while the I-131 was only used in one
class V injection well experiment. The first type of experiments to be discussed were
conducted with septic tanks on Big Pine Key. Residential units in this area obtain their tap
water from individual wells that penetrate the underlying fresh water lens at a depth of
about 2 meters. There is a potential problem as these residences have septic tanks in close
proximity. Septic tanks in the Keys are typically placed less than a meter below the land's
surface since the tank's leeching lines must be installed above the water table.

Two concerned residences allowed us to inject SFg saturated water into their toilets
and then collected samples from their kitchen taps for approximately two months to
ascertain the potential of well contamination. The approximate locations of the septic tanks
in relation to these residential wells is shown in Figure 2. The first experiment was

started on December 13, 1996 at site A (experiment A1). On June 12, 1997, we began two
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more experiments at site A and site B (experiments A2 and B). Background samples were
collected from the kitchen faucet before each injection. In each case, sixty liters of tap
water were sparged with 99.8% pure SFg (Scott Specialty Gases) for 20 minutes. A
sample was collected from the SF¢ sparged water which was then poured into a toilet.
Samples were collected from each well via a sink faucet within 20 minutes of injection and
then once daily for a week or two. After this initial period, samples were collected at the
leisure of the residents for approximately two months. Experiment A2 was only conducted
for one week.

A simulated septic tank site was established at the Ranger Station on Key Largo.
The well used for injection is eight inches in diameter with a depth of 10 meters. The well
is screened from 0.66 m to the bottom. Due to the shallowness of the screened portion of
this well, results from this study site may be comparable to results for septic tanks.
Approximately 3 m to the south is a monitoring well that is 5 cm in diameter with depth of
6 m. Itis screened from 1 meter to the bottom. Twenty six meters to the north of the
injection well lies Florida Bay (Fig. 3). Three experiments were conducted at this site.
For the first two experiments (July and August, 1996), SFg was bubbled directly into the
injection well for ten or twenty minutes at a low Atlantic tide. For the third, 100 L of water
was pumped from the injection well, sparged for 20 minutes with concentrated SFg, then
pumped back into the well at a rate of 10 L/minute during high tide.

The water level within the injection and monitor wells were determined as the
distance from the top of the well which was then corrected to a relative tide. The tide
modeling program, Tides and Currents for Windows (Version 2.0, Nautical Software),
was used to plot the Atlantic tide. Observations from a nearby site on the Atlantic side of
Key Largo have shown that this program is accurate for this location (Fig. 4). Water

levels in Florida Bay were measured with a meter stick stuck into the sediment.
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Sulfur Hexafluoride samples were collected from the well and the Bay periodically.
Due to the large screened portion of the monitoring well, it was assumed to be an open
system and therefore it was not purged before sampling. Tubing was inserted 2 m into the
well and pumped to the surface for collection. Each piece of tubing was rinsed with a
minimum of 3 times its volume prior to sampling. A second piece of tubing, looped at the
end and weighted, was used to sample Florida Bay waters. Water was collected from just
above the water/sediment interface. The tubing was put into position before injection and
was not moved during the course of each experiment. Either a peristaltic pump or a glass
syringe was used to collect the samples. During the August '97 experiment, samples were
collected from 5 different locations in the Bay in an attempt to evaluate any spatial
variability of seepage that could be occurring. Sample tubing was tied to the sides of cinder
blocks which were placed in an X-formation in the boat basin (Fig. 3).

The third and largest study site was a class V injection well located at the Keys
Marine Lab on Long Key. This type of injection well is currently used by multi-unit
residences such as hotels, trailer parks, campgrounds, and small communities in the Keys
(Paul et al., 1997). The class V injection well used for this study is drilled to 27.7 m and
cased to 18.5 m. After treatment in a package plant, waste water is gravity fed into the
injection well. There are seven monitor well clusters surrounding the injection well (Fig.
5). Each well cluster contains 4 wells drilled to depths of 4.6, 9.2, 13.8, and 18.5 m.
Each well had a 1.2 m screened portion at the bottom. Two tracer experiments were
conducted at this location, one in October 1996 and another in February 1997. In each
case, two hundred liters of water was sparged with concentrated SF¢ gas for 20 minutes.
For the February experiment, I-131 tablets were dissolved into the injection slug for a total
activity of 150 mCi. The solution was siphoned into the injection well at a low Atlantic
tide. Approximately 1000 L of waste water (salinity = 0 ppt) was then injected from the

package plant's holding tank as a chaser to drive the solutions into the aquifer. The
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surrounding well clusters were then monitored for the presence of SFg (and I-131 for Feb
exp.). Before each well was sampled, they were first purged to remove 3 well volumes.
Purge water was stored in a large holding tank for the duration of the experiment. Water
samples were collected using glass syringes or peristaltic pumps.

Atlantic tides for Long Key were obtained from the computer tide program
described earlier. Measurements taken from the canal across US-1 confirm that this
program is also accurate for this location (Fig. 6). Florida Bay tides were measured with
a meter stick taped to the boat basin dock.

Groundwater transport rates for all experiments were determined for each sampling
location by dividing the distance from the site of injection by the time of the peak
concentration of the tracer at that sampling location. In some cases, well concentrations
were still rising at the end of the experiment and no peak concentrations were observed.
For these events, the last (and highest) concentration was used to estimate the transport
rate. This method results in a minimum estimation of the transport time and thus a
maximum estimate of the transport rate. These values are therefore presented as being less
than the calculated maximum transport rate. In the injection well experiments, it was
possible to sample multiple depths at each well location and vertical transport rates were
also calculated. For these estimations, the wells' depths were subtracted from the injection

depth (18.3 m) and then divided by the time of peak concentration.

Sampling methods

Sulfur Hexafluoride samples for all experiments were collected with two different
variations of a head space extraction technique. Early in the study, samples were extracted
on site. Water was collected from wells with syringes and !/g inch copper tubing.
Approximately 2 m of tubing was inserted into a well. A glass syringe was attached to the

tubing with a 3-way stopcock and a small piece of tubing. After clearing the tubing and
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syringe of all air bubbles, three syringe volumes were drawn and discarded to act as a
rinse. The sample was then pulled into the syringe. A headspace of argon or ultra-high
purity nitrogen was then added to the syringe which was then shaken for two minutes to
extract the SF¢ from solution into the headspace. Approximately 8 mLs of headspace was
then injected into a 4 mL Vacutainer™. Standards stored in this fashion show no loss of
SFe from the vacutainer for more than 500 days (Fig. 7, Table 1). Samples were
analyzed within a month of collection.

Although the vacutainer method was adequate, it was too time intensive to allow the
collection of a large number of samples. To reduce sampling time, extraction was delayed
until the samples were to be analyzed. Therefore, samples were collected in 30 mL serum
vials with a peristaltic pump. To prevent contamination, each well or water body being
sampled had its own unique piece of tubing. After purging the tubing, a sample was
pumped into a serum vial and allowed to overflow for three bottle volumes. The vial was
then sealed with a rubber septa and a crimp cap. To prevent loss of SFg through the septa,
the samples were stored on their sides until the samples could be extracted and analyzed.
Samples were extracted in the lab by adding a small headspace (typically 4 mL) of argon or
ultra-high purity nitrogen to the sample. Simultaneously, a volume of water from the
sample had to be removed and discarded to allow room for the headspace. The serum vials
were slightly over pressurized with 1 cc of nitrogen to allow several injection volumes (100
uL or less) for the gas chromatograph (GC) to be pulled from each sample.

A comparison of these methods showed that both extracted 95+% of the SFg from a
water sample (Table 2). The latter method has the advantage of being able to change the
water to gas ratio during extraction, which allows SFg to be extracted from a larger sample
volume, resulting in a lower limit of detection which was, at best, 0.1 pM (10-13 moles/L).
It is possible to reach sensitivities of 0.03 fM (3 x 10-17 moles/L) by concentrating the SF¢

from a 500 mL sample onto a cold trap (Wanninkhof et al., 1991). This extraction
14




procedure is very time intensive and is unrealistic for the large numbers of samples
generated for the majority of the experiments presented here.

I-131 samples were collected in one liter containers with a peristaltic pump. The
water samples were returned to the laboratory and processed. In order to use this isotope
in the field, it was necessary to develop a procedure that was simple, quick, and
inexpensive. The majority of present procedures use an ion-exchange column and
determine the I-131 yield gravimetrically or consider the recovery to be quantitative.
However, increased ionic strength of a solution may inhibit accurate estimation of the yield
using these methods. Since most of the water we would be analyzing would be saline, a
different approach had to be taken. The procedure described below was originally
designed to be used with geothermal waters of moderate salinity and allows for the

measurement of I-131 using I-129 as a reference for the recovery.

Analytical methods

SFe samples were analyzed with a Shimadzu model 8A gas chromatograph
equipped with an electron capture detector. Typically, the volume injected was 100 uL or
less. The gas chromatograph contained a stainless steel column (180 cm x 0.1 cm I1D.)
packed with molecular sieve 5A (80/100 mesh). Initially, a PS5 mixture (95% argon, 5%
methane) was used as a carrier gas with a flow rate of 25 mL/min. After having problems
with carrier gas contamination, we switched to ultra-high purity nitrogen as a carrier at the
same flow rate. Column and detector temperatures were set at 90°C and 220°C,
respectively.

Headspace concentrations in ppmv (parts per million by volume, = UL/L) of SFg were
determined by reference to a 1.04 ppm standard (Scott Specialty Gases). The standard was run
at the beginning of each day, after every ten sample injections, and at the end of the day.

Headspace concentrations were converted to dissolved concentrations in UM as shown below:
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(ULL/L)/ (R((Latm)/(mol K)) * T (K)) * E (1)

where R is the gas constant from the ideal gas law, (PV = nRT), and T is temperature in degrees
K. The parameter E is the extraction efficiency which is determined by repeated extractions of
some of the water samples. All headspace gas is purged between extractions. The repeated
extractions are continued until 99% of the gas of interest has been extracted. E is then calculated

as:

Quantity of gas in first extraction/ Quantity of gas in summed extractions (2)

Extraction efficiency for SFg is at least 95%. Dilution of the standard show a linear
relationship between SFg concentration and response of the GC (Fig. 8).

Replicates were collected for 10% of the samples. In addition, duplicate injections
were run on the gas chromatograph every fifth injection. Precision between replicate
samples and duplicate injection were usually less than 10%.

To test for radio-iodine, one liter water samples are spiked with a known amount of
iodine-129 (I-129) and put through a series of oxidation/reduction steps to adjust the
oxidation state of the radioactive (I-131) and stable area iodine carrier (I-129) (Fig. 8).
Once in the correct oxidation step, the jodine is then precipitated as Agl in a slightly acidic
solution. Depending on the matrix of the sample, other silver compounds may co-
precipitate with the iodine. Many of these may be redissolved during the filtration process.
In addition to the radiometric determination of the recovery, samples may be filtered
through preweighed filters for a gravimetric yield determination. Filtered samples can then
be counted on a Nal detector for the quantification of both I-131 and I-129. A simple

equation may be used to estimate the number of I-131 counts in the I-129 counting region.
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Taking the low energy I-131 counts into consideration, the radiometric yield can be

determined and the I-131 sample activity may be estimated.

NATURAL TRACERS

Results and Discussion
Tracer concentrations

Results of the tracer analyses for groundwater samples collected on and offshore
exhibited elevated tracer concentrations relative to surface waters, except for ethylene which
had a limited data set (n = 15, measured only in offshore wells) and had similar
concentrations as surface waters (Table 3). Both methane and radon appear to vary
considerably spatially (82 - 1,124 dpm/L and 10 - 16,604 nM, respectively), however,
radon did not vary over time in the same well measured over a year apart (April 1995 - 291
* 58 dpm/L, June 1996 - 342 + 118 dpm/L). Although the two gases are produced
independently, there is a statistically significant correlation between the two in groundwater
samples collected (r = 0.46, n = 47, p < 0.01). Ethylene did not correlate well with either
radon (r = 0.34, n = 15, p > 0.05) or methane (r = 0.25, n = 15, p > 0.05) in
groundwaters. Radon and methane concentrations in groundwater samples averaged
approximately one to two orders of magnitude greater than that of surface waters. This
large difference in concentrations should allow for the use of these gases as indicators for
groundwater/surface water interaction in the Florida Keys.

Surface water radon and methane concentrations varied from <1 dpm/L to >20 dpm/L
and 5 to 100 nM, respectively. Radon and methane samples collected from the reef-side of
the Keys varied from <1 dpnv/L to approximately 20 dpm/L and 4 to 40 nM, respectively
(Table 4). As with the groundwaters, radon and methane were also statistically correlated
on both the bay-side (r = 0.51, n = 191, p < 0.01) and the reef-side (r=081,n=84,p<
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0.01) of the Keys. Ethylene concentration in bay waters were statistically correlated with
both radon (r = 0.27, n = 145, p < 0.01) and methane (r = 0.31, n = 151, p < 0.01) if
samples collected in canals and deep holes/springs are neglected, otherwise the correlation
is not statistically significant (see below). Ethylene samples collected on the reef-side were
statistically correlated with methane (r = 0.62, n = 41, p < 0.01), but not as well with
radon (r =0.42, n =41, p < 0.05). Radon and methane are statistically correlated in all
surface waters sampled throughout the Keys and since the production of the two gases is
totally independent of each other, these findings are consistent with their being from a
common source. As shown above, the two gases are also correlated in groundwaters,

therefore it is probable that the common source of these gases in groundwater discharge

into the overlying surface waters.

Tracer Distribution in Surficial Water

General trends in surface water concentration were established by contouring data
from each tracer survey using a kriging method developed by Surfer, Jandel Scientific
(Fig. 9-20). Concentration data were then grouped into four different categories
according to region in order to evaluate spatial differences. Regions include samples taken
near the North Coast (within ~2 miles of coast), Keys Bay-side (within ~2 miles of coast),
Mid North East Bay (east of Black Betsy Keys), and Mid Bay (west of Black Betsy Keys).
Samples from the Keys Bay-side were more elevated in groundwater tracer concentrations
(e.g. radon, methane, and ethylene) than were samples from the other regions within the
bay throughout the study period (Table 5). In particular, one of the narrowest areas of
Key Largo (near the Sheraton and Rock Harbor) continually showed some of the highest
tracer concentrations in surface waters on both the bay and reef side of the Keys, excluding

canals and holes/springs. The tracer results suggest that the greatest groundwater seepage
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into Florida Bay occurs from and along the back-side of the Keys, and that groundwater
input into the Mid-bay, North-East Bay and North Bay regions is of lesser importance.

Samples collected along the reef-side of the Keys showed very little variation
throughout the study period. Surface water concentrations were relatively low on the reef-
side (Table § and 6), except near Rock Harbor, Dove Key, and Rodriguez Key. Tracer
concentrations in this area were typically 2-4 times higher in for both radon and methane.
Samples were also collected along the reef tract and from cracks within some of the healthy
(e.g. Molasses, French) and degraded reefs (Algae, Carysfort). There was not any
significant difference between samples collected from cracks and surface waters or between
degraded and healthy reefs. Sample concentrations along the reef tract are generally lower
than samples collected near shore. These differences in concentration between the reef and
near shore waters, as well as the lack of differences between surface water and water
within the reef, are may be attributed to the highly energetic environment along the reef
tract. Water within the reef is quickly exchanged with ambient surface water, therefore
dilution of the tracers is probable. At any rate, with the exception of the reef-side areas
near the Keys, Rock Harbor and Dove Key, our data do not provide any evidence for
groundwater directly discharging along the reef tract. This is not to say that the phenomena
does not occur. It is difficult in the study of nature to eliminate any possibility definitively.
However, we see no evidence for the process.

Within the Keys, samples collected from artificial canals/trenches and submarine
springs were extremely elevated in tracer concentrations and generally fully saline (e.g.
more saline than surficial waters at the time of sampling; Table 6). Three submarine
springs were identified and investigated during the study period: (1) Garden Cove Spring,
located on the Atlantic-side of N. Key Largo (25° 10.22', 80° 22.02"); (2) Lois Key
Spring on the Atlantic-side of Surgarloaf Key (24° 36.11', 81° 27.48"); and (3) a spring
located on the bay side of Big Pine Key, "Four Corners" spring, in an open area
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equidistant from Big Pine Annette, Cutoe, and Howe Keys. Upon further investigation of
these springs, it was determined that Four Corners spring was more dependent on rainfall
than tidal influence. This particular spring did not appear to be moving water in or out of
the solution hole, which measured about two feet in diameter. Samples taken from Four
corners spring had similar concentration of tracers as that of the surface water. Samples
were collected in May, 1997 during a relatively dry period for the area. The low rainfall
and possible low water table may explain the lack of flow from the spring. However,
elevated tracer concentrations were measured in the other two springs and in several canals,
suggesting that subsurface fluids are actively seeping into these features, and from them
may spill into Florida Bay/Atlantic Ocean. Submarine springs (Lois and Garden Cove)
appear to be heavily influenced by the Atlantic tide. During high tide in the Atlantic,
surface waters were sucked into the springs. Periods of low Atlantic tides showed the
opposite, waters moving out of the springs at relatively high flow rates (Table 7). This is
consistent with other observations of a tidally driven sloshing effect of groundwaters
beneath the Keys. Water samples were collected during both high and low tides when ever
possible. Not surprisingly, submarine springs appear to have a very similar composition,
although slightly diluted, as that of the groundwater (Fig. 21). The natural tracer
concentrations in groundwaters and samples collected from springs (Lois and Garden
Cove) have a significant correlation (r = 0.98, n =9, p <0.01). Radon and methane ratios
for the two water masses are almost identical (groundwater Rn:CHy = 0.32, spring water
Rn:CH4 = 0.30; ratios are based on averages for each water mass). The similarities in the
water masses indicates groundwater as the source for the springs rather than recirculated
surface water (reef-side surface water Rn:CHy4 = 0.13, bay-side surface water Rn:CHy =
0.18). Flow rates were measured from the Garden Cove spring, Key Largo with a hand-

held mechanical flow meter manufactured by General Oceanics (Table 7). Flow from the

spring was strong enough to produce a boil on the surface of the water on an outgoing tide.
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Canals and trenches had a low tracer ratio (0.02) due to the high methane
concentrations measured in these features. The higher methane contribution can probably
be attributed to a higher organic content in the water masses and the sediments underlying
them. Canals are typically a sink for particulate matter due to the low energy environment.
Decaying organic matter would be a source for methane without radon production, leading
to a lower Rn:CHg4 ratio. The high organic content and low energy of the canals tends to
lead to eutrophic conditions (Lapointe and Clark, 1992; FDPC, 1973). In any case, the
high radon concentrations in these features (springs and canals/trenches) are consistent with
a significant influx of groundwater. It is likely that when these features were dredged, less
permeable layers in the rock were cut and removed resulting in greater conductivity
between surface water and the Key aquifer.

Nutrient samples were collected and analyzed from select surface waters,
groundwaters, springs, and canals/trenches (Table 7). Nutrient concentrations in
groundwater wells may have been biased due to the limited data set , because many of the
wells were located in close proximity to a Class V sewage injection well (Keys Marine
Laboratory). It is interesting to note that majority of the phosphate concentrations are
below detection limit, except for samples collected in groundwater wells, springs,
canals/trenches, and the interstitial fluid near Porjoe Key. All of these areas are suspected
of being heavily influenced by groundwater based on the natural tracer concentrations.
Surface waters were typically low in nutrient concentrations. Nitrate was the only
parameter present in all waters sampled. On average nitrate and ammonia concentrations
were equal within the Bay. Although the nutrient content of these various water masses
may seem low, the total flux of groundwater carrying these constituents may be important.
For instance, the garden cove spring has relatively low nitrogen concentration, contributing
approximately 0.1 kg N day-!. However, this was occurring over an extremely small area,

only about one square meter. The seepage meter near Porjoe Key could be used to make a
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crude estimate of nutrient input from passive groundwater flow. This particular meter was
flowing extremely rapidly [(7.35 + 0.96) X 10-5 m3 min-1] (Fig. 22a), filling a four liter
bag in less than an hour (Table 7), which is much faster than most measurements.
Seepage meters in this area had an average flow of (3.35 + 1.82) X 10-6 m3 min-1. More
interesting was the composition of the interstitial water from the seepage meter near Porjoe
Key. Salinity of the interstitial water taken from two seepage meters were significantly
different (p<0.01) than the ambient seawater (28.5 ppt, n=6) measured by titration (Fig.
22b). Although the contribution from an average seepage meter is only 0.001 gN/day
(based on nitrogen concentrations collected from the Porjoe Key seepage meter and the
average seepage meter flow), this is only over a quarter of a square meter. This would be

an extremely large source of nitrogen to surface waters if this flux occurred over all of

Florida Bay.

I5N Enrichment in Algae

Algae was collected for 15N analysis as a possible indicator of nitrogen derived
from groundwater inputs. Samples were collected throughout the study period independent
of season, The data presented is a compilation of all analyses performed up to June 1997.
As with the other natural tracers, 15N also is significantly higher near the Back-Keys than
the other regions sampled (Table 5), although enriched nitrogen is also present near the
North Coast in the Eastern Bay. The 15N results exhibit somewhat similar trends as the
other tracer data when contoured (Fig. 23). The elevated 15N results are probably a
signal for denitrification. Denitrification is a form of anaerobic respiration and takes place
in a suboxic environment in the presence of organic matter. During denitrification the
lighter nitrogen isotope (14N) is converted to N, gas at a more rapid rate, leaving ISN

enriched nitrate behind to be taken up by algae and seagrasses. Along the North Coast

these conditions are met in the muddy sediments of the bays and lagoons along the shore.
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Along the Keys, however, and particularly along the bay-side of Key Largo, the bay floor
is sediment poor, with only a thin veneer of sediment overlying rock. Denitrification is not
as likely to occur in the sediments near the Keys. Therefore the enriched 15N values near
the Back-Key areas must be from a different source. We propose that the suboxic
environment where denitrification occurs in this area is in the subsurface, within the
carbonate framework of the Keys. 15N of groundwater nitrate is enriched (J.K. Bohlke,
pers. comm., 1996). Groundwater seepage can then bring these suboxic fluids to surface
water where 15N is taken up. The most pronounced enrichment with 15N and other tracers
occurs near Rock Harbor on either side of the island. Interestingly, this area is one of the
thinnest points in the island and is near a large commercial Class V sewage injection well.
The natural tracers (radon and methane) suggests that there is a significant amount of
groundwater/surface water interaction around this area on both sides of the key, while the
nitrogen data may suggest that groundwater entering the area is enriched in the heavier

isotope, possibly due to waste disposal practices.

Tidal Experiment

An extensive twelve hour tidal experiment was conducted on both sides of Key Largo
near Rock Harbor where high concentrations of radon and methane were previously
observed. Groundwater wells (two wells at each site, 15 ft. and 60 ft.; installed by Gene
Shinn, USGS) were monitored for pressure head relative to ambient water. Surface waters
were collected hourly and analyzed for radon, methane, and nutrient concentrations.
Groundwater seepage was monitored throughout the tidal cycle using seepage meters
which were cemented directly to the hard-bottom (groundwater wells and seepage meters

were installed by Gene Shinn et al., United States Geological Survey).
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Results from the experiment verify the dependence of subsurface water movement
beneath the Keys to the Atlantic tide stage. The pressure head within the well on the bay-
side perfectly tracks the Atlantic tide with a very small lag time (Fig. 24). As the tide in
the Atlantic increases, the well head becomes more positive and water begins to move
rapidly out of the well. As the tide decreases in the Atlantic, the well head also decreases
leading to a negative head which would cause water to be sucked into the well. This
blowing and sucking of water to/from the well was observed on both sides of the Keys
during the experiment. In contrast, the pressure head on the reef-side of the Keys exactly
mirrored that of the Atlantic tide. As the tide increased, the pressure head decreased
creating a sucking action within the well, and vice versa as the tide fell. Therefore, one
would expect that groundwater entering the bay would be more pronounced during a high
tide in the Atlantic and less pronounced on the reef-side during the same tide. The
constituents associated with that groundwater should also follow those same patterns.

Seepage rates measured on both sides of the island showed a similar pattern to that
expected based on the well information (Fig. 25). Consider first the reef-side (Fig.
25a), where seepage rates from one of two meters were low during the high tide compared
to those rates measured during the low tide. This meter also showed recharge during the
Atlantic high tide as expected. Seepage rates vary considerably between the two meters
demonstrating the extensive spatial heterogeneity. On the bay-side with the exception of
the first three measurements at the beginning of the period (circled), the seepage rates
almost exactly mimic the Atlantic tide as was hypothesized based on the pressure head of
the wells (Fig. 25b).

If elevated radon and methane concentrations in surface waters are due to
groundwater inputs, then similar trends may be observed in seepage and tracer data.
Although methane did not show a significant difference in concentration throughout the

experiment, radon may show some correlation to the seepage data. Differences in radon
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concentrations are very small, but the trend is suggestive, e.g., on the reef-side there are
somewhat higher concentrations during a low Atlantic tide and somewhat lower
concentrations during a high Atlantic tide (Fig. 26 a and b). Nutrient trends were not as
obvious during this experiment, however, results for some of the nutrient analyses are
shown for completeness (Fig. 27 and 28). The nutrient data is not surprising due to the
multiple sources/sinks and complicated dynamics of these parameters.

This tidal experiment, along with multiple observations of submarine springs
blowing and sucking in response to the Atlantic tide, demonstrates the extreme dependency
of groundwater movement below the Keys to the Atlantic tide. Current studies are
examining the water level of both Florida Bay and the Atlantic on longer time scales so that
a better understanding of the tidal induced flow beneath the Keys may be reached. The
average water level in Florida Bay fluctuates very little on a daily basis, but may change by
as much as 0.5 meters seasonally. This seasonal change may be important to the net
groundwater movement in the northern Keys where the change in the height of the Bay is
more pronounced. Assuming groundwater contributes to nutrient loading of surface

waters, these seasonal changes may be important.

ARTIFICIAL TRACERS

Results
Septic Tank
The SFg concentrations of the 70 L injection slugs used in the septic tank
experiments were 42.96 * 2.65 uM, 199.93 £ 2.12 uM, and 210.46 + 4.67 uM for
experiments Al, A2, and B; respectively. SFg was detectable in tap water for each
experiment within 20 minutes of injection and peak concentrations were observed within

one day (Table 8). For experiment A1, the peak concentration, 9.62 + 0.07 pM, (1 pM =
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10-12 M) was seen 15 minutes after injection (Fig. 29a). This peak is suspicious as a
flow rate of 80m/hr would have to exist for the SFg plume to travel to the well that rapidly.
Lapointe et al. (1990) reported a maximum flow rate of 3.7 m/day (0.15 m/hr) on Big Pine
Key. Contamination of this sample while sparging the water slug is likely. To test this, a
second experiment was conducted at site A (exp. A2) for one week. Particular care was
taken not to allow concentrated SFg gas come in contact with the sample vials. While
sparging the injection slug, the vials were kept outside and brought in as needed after the
injection. No initial peak was observed for experiment A2 (Fig. 29b), suggesting
contamination may have been to blame for the initial peak observed in previous experiment.
In fact, no significant changes in SFg concentration was observed for an entire week after
the second injection. With the exception of the initial peak observed in experiment A1, all
of the samples collected at site A showed very low SFg concentrations (less than 1.2 pM)
for the duration of both experiments.

Experiment B showed much higher concentrations than either experiment at site A.
Fifteen minutes after injection, duplicate samples were collected from the kitchen sink.
These samples had relatively high SFg concentrations of 10 and 27.6 nM (1 nM = 10-9 M).
The large discrepancy in these samples along with their rapid appearance suggests that
these samples were also contaminated during the sparging process. For this reason, they
were discarded and are not included in the data set. The rest of the data is included in Fig.
9c and Table 3. Values for experiment B ranged from 0 to 4.0 nM.

Before injection, background levels at site B were 0.48 + 0.09 pM (1 pM = 10-12
M), presumably from the previous work done at site A. The first sample (0.18 days)
revealed a concentration of 3.5 nM. By 0.44 days, the concentration fell to 0.41 nM then
shot up to 4.0 nM again at 0.85 days. After this second peak, values began to tail off until
day 10 when two elevated samples were observed with values of 0.49 and 0.48 nM (F ig.

29c). After this small rise, values fell to 39 pM and continued to fall, eventually becoming
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undetectable at 47 days. Values remained below detection for the remainder of the
experiment which lasted for 68 days.

Transport rates were not calculated for either experiment at site A due to the lack of
a reliable peak in SF¢ concentration. The one peak observed during experiment Al was
questionable enough to doubt its validity. As mentioned above, a transport rate of 80m/hr
would have to exist for this peak to be a result of groundwater movement. In addition, a
similar peak wasn't observed at all for experiment A2. The larger initial peak observed at
0.85 days during experiment B indicates a transport rate of 1.37 m/hr (32.9 m/day). This
is considerably higher than previously published flow rates of groundwater through Miami
oolite. The small peak observed at 10 days; however, corresponds to a flow rate of 0.11

m/hr, very close to the flow rate of 0.15 m/hr reported by Lapointe et al. (1990) on Big
Pine Key.

Simulated Septic Tank

The results from the July '96 experiment at the Ranger Station are shown in Fig.
30 and Table 9. The injection well was sparged for 10 minutes during a nearly low
Atlantic tide. The rational for injecting at low tide was that if tidal pumping was occurring,
groundwater would be moving toward the Bay during a rising tide. SFg samples for the
monitor well and the Bay waters were collected for approximately 16 hours. The tides
plotted from the monitor well water level data and the Atlantic indicate a 1.43 hour lag
between their respective high tides. There is also a damping of 60% of the tidal amplitude
as the pressure wave moves through the carbonate rock. The tidal levels in Florida Bay
were not monitored during this experiment. It is well known that the tidal level in this
region of the Bay is controlled primarily by local winds. The highest Bay tides occur when

the winds blow from the west, piling water up in the Bay. Lowest tides are associated with
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easterly winds which force water out of the Bay. There was very little wind during this
experiment and the water level in the Bay didn't visually appear to change by more that a
couple of centimeters during the entire experiment.

SFe was detected in Florida Bay after 6.75 hours after injection at a concentration
of 35.5 pM (Fig. 30). A peak concentration of 85.4 pM corresponding with a high
Atlantic tide was observed after 7.93 hrs. This yields a transport rate of 3.28 m/hr. As the
Atlantic tide turned and began to fall, the SF¢ quickly disappeared, presumably degassing
from the surface waters and/or advecting from the sampling area. SF¢ was detected in the
monitor well 5 hours after injection at a concentration of 0.223 nM. Values fluctuated
slightly for 3 hours then dropped below detection. At just under 10 hours, the SFg
concentrations began increasing again, reaching a peak concentration of 2.27 nM an hour
later during a falling tide. A transport rate of 0.27 m/hr was calculated from the monitor
well data. This is most likely an underestimate if the SFg plume moved first north toward
the Bay on the rising Atlantic tide then turned south on the falling tide before reaching the
monitor well, as the data suggests.

The second Key Largo experiment was conducted in August '96 at the same
location. Due to background SFg levels from the previous experiment, both wells and the
Bay were monitored for 6 hours before injection for SFg concentrations and water levels.
Residual SFg was still present in the injection and monitor wells at concentrations of <14
nM and <3 nM, respectively and didn't fluctuate much with time. The elevated value in
the injection well could represent SFg contamination of the well casing from the previous
injections as SFg can bind to organic materials such as PVC. No residual SF¢ was detected
in the Bay, although it was only sampled during a falling Atlantic tide. The injection well
was sparged for 10 minutes with concentrated SFg during a low Atlantic tide. It was

assumed that this would be sufficient to overcome the background concentrations already

present in the wells.
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The tidal levels for the Atlantic Ocean, the injection well and Florida Bay are plotted
against time in Fig. 31a. Due to more intense monitoring, the tidal lag between the
Atlantic and the injection well noted in the previous experiment is much more evident. A
lag time of 1.78 hrs (30.38) was calculated from three observed tidal cycles. This was
simply done by taking the time difference from each low and high tide. A damping of 52%
(£ 6%) of the tidal amplitude was observed. The water level in Florida Bay was also
monitored and didn't vary more than 4.6 cm.

The SFg results for the August '96 experiment are shown in Fig. 31b and Table
10. After a complete tidal cycle (0.71 days), no change in SF¢ had been observed in the
monitor well. This raised concerns whether the well was sparged adequately enough to
overcome background levels. The injection well was resparged with concentrated SFg gas
for 20 more minutes at the next low tide (t=0.77 days) in hopes of resparging the same
water mass as before. No more measurable changes in SFg were seen until 1.16 days
when the monitor well's concentration started rising. A maximum concentration (24.6 nM)
was reached at low tide (1.20 days) indicating a transport rate of 0.30 m/hr. As discussed
previously, this could likely be an underestimation. Values returned to baseline after 1.26
days as the tide began to rise. A larger peak was observed at the next low tide (1.71 days)
with a maximum SFg concentration of 72.2 nM. By 2 days, values were returning to
baseline values. No further samples were collected until 2.64 days during a falling tide.
The SF¢ concentration in the monitoring well at this time (70.4 nM) was similar to the
previous maximum.

No SFg was detected in Florida Bay until 1.25 days, just as the first peak in the
monitor well was declining, when a concentration of 70.8 pM was observed. This peak
declined to 27.1 pM then increased slightly at 1.46 days to a concentration of 41.1 nM.
This double peak may be the result of the multiple injections. After 1.5 days, SFg

concentrations in the Bay were below our limit of detection. No further traces of SFg were
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detected in the Bay waters for the remainder of the experiment. The maximum
concentration observed at 1.25 days correspond with a groundwater transport rate of 2.30
m/hr. This calculation assumes that this peak concentration was from the second injection.
If the same is assumed for the second, smaller peak at 1.46 days, a transport rate of 1.59
m/hr can be inferred. If one were to assume that this double peak was due to the first
injection alone then transport rates of 1.08 and 0.90 m/hr could be calculated.

It is interesting to note that for these two experiments (July and August '96), the
injections occurred at a low tide and subsequent peaks in the monitor well were all detected
at nearly the same tidal stage that existed during the injections. This suggests that net
movement of the plumes may be small even though they are covering a distance of at least
29m during the courses of both experiments.

The third and final experiment at this location was during August, 1997. This time,

100 liters of water was pumped from the injection well, sparged for 20 minutes with
concentrated SFg then pumped back into the well. Unlike the two previous experiments,
injection was conducted during a high Atlantic tide rather than a low. The water level in the
monitor well (approximately 3 m soqth of the injection well) was measured during the
injection and had increased by more than 1 meter as the injected slug was pumped into the
aquifer. The monitor well water level quickly returned to normal after the injection was
completed. The monitor well was sampled for SFg and water levels every 30 minutes
while the five Bay stations were sampled for SFg every hour. The water level in the Bay
was also monitored hourly.

The tidal data are summarized in Fig. 32a. Once again, a time lag was observed
between water levels in the Atlantic and in the monitor well. This lag was estimated to be
1.37140.27 hrs during the course of this experiment. The amplitude of the Atlantic tide was

dampened by 52% (+ 4%) by the time it reached the monitor well, just as it was in the

August '96 experiment. The Bay water levels were out of phase with the Atlantic tide but
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the amplitude was much smaller (<14 cm) and coincided with high northerly winds. It is
unclear whether this small tidal change in the Bay affected groundwater movement during
the course of this experiment.

Background concentrations for the injection well and the monitor well were 0.31
and 0.03 nM, respectively. As in the August '96 experiment, no increase in the monitor
well's SF¢ concentration was observed during the first tidal cycle after injection (Fig.
32b, Table 11). During the next rising tide, monitor well SFg concentrations increased
along with the tidal level of the monitor well, reaching a peak value of 1.56 nM at 14 hrs.
This yields a transport rate of 0.21 m/hr. This may be an underestimation if the plume
either moved through the monitor well undetected for the first tidal cycle or moved a little to
the north before turning and heading south toward the monitor well. This peak coincided
with the highest water level in the monitor well. As the tide fell, the SFg concentration
followed suit, finally reaching background levels at low tide (18.5 hrs). A second, larger
peak was observed with the next high tide. Once again, the maximum SFg concentration
(4.63 nM) of this peak occurred during the highest monitor well tide. As the tide ebbed,
SFe levels dropped returning to baseline at low tide then began rising with the next
flooding tide. These results are similar to the two previous experiments in the respect that
peak SFg concentrations were observed in the monitor well during the same tidal stage that
existed at the time of injection.

Five sample sites were monitored in FL Bay to evaluate the spatial variability of
groundwater seepage with time. Before injection, a background sample with a
concentration of 2.54 pM was collected from site #3. SFg concentrations are plotted
against time for each Bay site (1-5) in Fig. 33. The water level in the monitor well is also
shown. All of the sites showed similar trends. The highest concentrations were observed
shortly after Atlantic high tide as one would expect. The calculated time lag between these

maximas and the highest monitor well water level is 2.19£1.62 hrs. Only one sample from
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the Bay had a higher concentration than the background sample during the entire
experiment. This suggests that the SFg observed in the Bay for this experiment was left
over from the two previous experiments. This residual plume seems to be sloshing back
and forth between the monitor well and the Bay. Since this injection occurred at high tide
(unlike the previous experiment where injection occurred at low tide), the newly injected
SFe plume was probably transported to the south initially then turned with the tide and
moved back to the north. We suggest that this tidal pumping movement kept the SFg
plume in the southern vicinity of the injection well and most likely prevented the SFg plume
from reaching the Bay waters over the timescale of this experiment. This is also supported
by the low values observed in the Bay, which were significantly less than those observed
in previous experiments.

Since the trends for each Bay sample site were so similar, the average Bay
concentration and standard deviation were computed for each sampling round. Both the
average and the standard deviation are plotted against time in Fig. 34. The highest
variability between the Bay sites followed shortly after an Atlantic high tide when,
according to the tidal pumping theory, one would expect seepage into the Bay to be the
greatest. This suggests that when maximum seepage occurs, it is somewhat patchy.
Conversely, the concentrations and variability are the lowest just after low Atlantic tide
when water from Florida Bay is presumably being sucked into the bedrock of the Keys.

These simulated septic tank experiments show that substances injected into the
upper portion of the water Table in Keys can be transported rapidly (0.21 to 3.28 m/hr)
through Key Largo limestone and has the potential to reach surface waters within hours.
The groundwaters seem to be driven through the subsurface matrix by tidal pumping,
moving north (bayward) as the Atlantic tide rises and to the south (seaward) as the tide
falls. Results from the five Bay stations in the last experiment indicate that residual SFg

seems to be seeping into the Bay little by little with each tidal cycle. A year had passed
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between the last two experiments and SFg was still present in the Bay before the last
experiment, suggesting a long resident time of substances injected into the aquifer. It is
unclear how nutrients from septic tanks are affected by this long resident time. If given
enough time, it is quite possible that the majority of the nutrients could be stripped from the
water by indigenous microorganisms or in the case of phosphate, adsorbed onto the
carbonate rock. Another possibility is that with each tidal cycle, a small portion of the
wastewater plume could be introduced to surficial waters at a slow enough rate to be
scavenged by benthic macroalgae or bacteria. On the other hand, if the nutrients aren't
utilized in situ, this situation could lead to suspended algae blooms in the water column
which could potentially be fueled by the anthropogenic nutrients puising out of the

limestone with each passing tide for as long as one year.

Injection (sewage disposal) Well

During the October 1996 injection well experiment, there was heavy daily rainfall
for the first two weeks of sampling. Results of the October 1996 experiment are shown in
Fig. 35-42 and Appendix 1. Note that Fig. 35a and 35b are the same data on
different time scales. The 200 L injection slug had a SFg concentration of 46.25 £+ 1.21
UM. Due to a spill of purge water in the first few hours of the experiment, the Bay waters
were not sampled for SFg. In addition, there was no lag observed between tidal levels in
the wells and the Atlantic tide (Corbett, personal communication). This suggests that the
aquifer's hydraulic conductivity is too high to be accurately measured with the 30 minute
sampling regime conducted.

The first major flow path observed was southward. Two hours after injection, the
first trace of SFg (58.06 nM) was seen at well 1 at 18.3 meters and increased to a
maximum of 70.38 nM after 2.9 hours had passed (Fig. 35). Well 1 is located 5 m south

of the injection well, resulting in a transport rate of 1.72 m/hr. The maximum SFg
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concentration observed at this well was 3 orders of magnitude (0.1%) of that injected. A
much smaller peak (1.49 nM) was also observed at well 3, 18.3 m (5 m east of injection
well) during the first hour of the experiment (Fig. 37). The SFg concentration at this well
rapidly dropped to below 0.10 nM and remained there until 18 hrs.

Another small peak comparable to that of well 3, 18.3 m was also observed at well

5 at the shallowest depth, 4.6 m (Fig. 39). Well 5 is 10 m south of the injection well.
SFg concentrations here rose to 0.80 nM, a dilution of 10,000 times the injected
concentration, after 6.2 hrs had passed. This yields a horizontal transport rate of 1.61
mv/hr, very close to that calculated for well 1, 18.6 m; and a vertical transport rate (VTR) of
2.2 m/r. After 6 hours, SFg was also detected in well 1 at shallower depths (13.7 and 9.1
m) at concentrations of 0.74 and 0.30 nM (Fig. 34). By 10.6 hours, well 1 13.7 m
reached a peak concentration of 27.0 nM. The 9.1 m well peaked out approximately 7
hours later with a concentration of 9.45 nM. The results of these two depths gives
horizontal transport rates of 0.47 and 0.28 m/hr, respectively. Vertical transport rates for
these two depths were calculated to be 0.43 and 0.51 m/hr, respectively. These shallow
flow paths at wells 5 and 1 illustrate the buoyancy of the wastewater plume (salinity = 0
pp) as it is injected into the saline aquifer. These data shows a portion of the waste has the
potential to travel 15 meters upward over a horizontal distance of 10 m on timescale of a
few hours.

The next traces of SFg were observed at wells 3 and 2 (Fig. 37 and 36),
respectively. After about one day, SFg reached a maximum in well 3, 13.7 meters of 18.5
nM (horiz. transport rate (HTR) = 0.22 m/hr, vert. transport rate (VTR) = 0.20 m/hr).
During this time, concentrations at 9.1 m were increasing much slower and finally reached
a maximum concentration of 11.6 nM in 20 days (HTR = 0.01 m/hr, VIR = 0.02 m/hr).

Well 3 19.3 m, which showed a small peak earlier in the experiment, slowly crept up to a
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value of 1.1 nM after 7.0 days then hovered between 1.0 and 0.2 nM for the remainder of
the experiment.

Well 2 is 5 m north of the injection well and shows trends similar to well 3, 9.1
meters. Concentrations at all depths here began increasing slowly over a week or two
period (Fig. 36). The two deeper wells (13.7 and 18.3 m) reached their maximas (2.96
and 4.65 nM) at 20 days and then began to decline. This yields transport rates of 0.01
m/hr for both horizontal and vertical transport. The shallower wells' (4.6 and 9.1 m)
concentrations were still rising as of the last sampling period. This yields HTRs of less
than 0.008 m/hr for both depths and VTRs of less than 0.005 and 0.008 m/hr,
respectively. These are maximum estimations of transport rates since these SFg
concentrations were still rising as of the last sampling round. In most cases, the time of
peak concentration was used to calculate the transport rate; however, if no peak was
observed the last and therefore highest value was used to estimate a transport rate. For this
reason, these estimations are presented as maximums in Table 12, which summarizes the
transport rates for this study. The remainder of the wells: 4, 6 and 7 took much longer than
the others to show signs of SFg and were generally of lower concentrations (Fig. 38,
40, 41). As of the last sampling period (t = 77 days), some of the depth at these wells
were still increasing in concentration.

A canal across US-1 was sampled 5 days after injection and showed a SFg
concentration of 1.3 pM (Fig. 42). At 6 days, a maximum of 1.4 pM was reached (HTR
= 0.74 m/hr) then levels declined. This maximum concentration is more than seven orders
of magnitude less than the original injection slug. After 46 days, no SFg was detected in
the canal. This shows that sewage has the potential to reach the surface waters in a few

days, although it is greatly diluted within the surface waters. The flux of contaminants into

surface waters has not been investigated.
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These results suggest there are 2 types of movement for deep well injected sewage.
The first is rapid advection through conduits presumably formed by the dissolution of or
fractures within the calcium carbonate. The results presented here indicate that this rapid
flow can be as much as 1.72 m/hr (41 m/day) horizontally and as great as 2.2 m/hr
vertically. This suggests that buoyantly driven vertical flow can be greater than the
horizontal flow. The next type of groundwater movement is slow diffusive transport
through portions of the rock with lower permeability. Estimated horizontal flow rates for
this diffusive transport can be less than 0.01 m/hr while vertical rates can be less than
0.002 m/hr.

In February 1997, we repeated the experiment using SF¢ as well as I-131 as tracers
to determine if the major conduit pathways observed previously persist temporally and in
association with different seasonal meteorological conditions. Due to the previous work
done on site, a background concentration of less than 2 nM SF¢ was found at all the wells.
This relatively low background was not expected to hinder our observations of major
flowpaths although the resolution of the slow, diffusive type of transport would be lost.
No background I-131 was detected. Due to the presence of residual SF¢ and the short half-
life of the I-131, the February experiment was only monitored for nine days. There was no
significant rainfall during the course of this experiment.

SFe results of the February '97 experiment are shown in Fig. 43-51 and
Appendix 2. Since I-131 results correlated so well with SF6, results for the radio-tracer
are tabulated in Appendix 3 rather than graphed (Fig. 52). Significant concentrations
(defined as those I-131 values above the y-intercept of Fig. 52, 18319 dpm) of I-131
were only observed in wells associated with rapid flow (wells 1, 2, 3, and 4) therefore
only these figures are shown in this report. Wells 5, 6, and 7 occasionally showed elevated

values for I-131 but these peaks were relatively small (<7000 dpm) and are beleived to be

contamination artifacts. Since the I-131 results support those obtained using SFg, the
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transport rates and dilutions discussed below were calculated using the results from the SFg
data.

The first flowpath observed in February was once again southward at well 1, 18.3
meters (Fig. 43) with a peak SFg concentration of 358 nM after 11 hours (HTR = 0.45

m/hr). This horizontal flow rate is an order of magnitude slower than the previous estimate

at this location, although the SF¢ concentration is four times more concentrated than before.
The 13.7 meter well climbed to 78 nM SF in about 33 hours corresponding to flow rates
of 0.14 m/hr both vertically and horizontally. The 9.1 and 4.6 meter wells at this location
each took about 80 hours to top out with concentrations of 22.4 and 2.7 nM SFg,
respectively. The HTR for both depths was calculated to be 0.06 m/hr while the VTRs
were 0.11 and 0.17 m/hr, respectively. With the exception of the shallowest well, which
reached a peak SF¢ concentration of 2.68 nM after 79 hrs (HTR = 0.06 m/hr, VTR = 0.17
m/hr), the transport of the tracer to well 1 was slower and less diluted than in the previous
experiment.

At well 3, the shallow well (4.6m) showed no increase in SFg concentration (Fig.
45). The deepest well (18.3m) showed a small peak of 1.52 nM at 19.2 hours then began
to decrease slowly, yielding a flow rate of 0.26 m/hr. The intermediate depth wells (9.1
and 13.7 m) peaked out at 2.92 and 3.31 days, respectively, with much higher
concentrations of 14.49 and 21.81 nM. These results suggest transport rates horizontally
of 0.07 and 0.06 m/hr and vertically of 0.13 and 0.07 m/hr. Similar results were seen at
well 4, 9.1m (Fig. 26) where concentrations began increasing at 1.08 days, reaching a
maximum of 19.72 nM after 2.96 days (71 hrs). This yields a HTR of 0.07 m/hr and a
VTR of 0.13m/hr. None of the other depths at well 4 showed any significant increase in
SF¢ concentrations.

Well 3, 13.7m took much longer to reach a peak concentration during the February

experiment than it did previously. In October, this well quickly reached a maximum after
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Just 0.95 days (22.8 hrs). During this experiment, however it took 3.31 days. These
results are similar to those observed at well 1, where higher concentrations were seen
during the February experiment although the transport rates were slower. This could be
due to the fact that there was no rainfall during the February experiment, whereas during
the October '96 experiment there was daily heavy rainfall for the first two weeks of the
experiment. Less recharge may result in less dilution of the SFg plume as well as slower
movement away from the injection well.

Trends observed at well 3,9.1 m and at well 4, 9.1 m (east and west of the
injection well) support the idea that local recharge may alter flow paths for the waste water
plume. At these intermediate depths, a maximum concentration of SFg was seen after
approximately three days. This is in contrast to the previous experiment where slightly
smaller peak values were seen in these wells after about three weeks. This seems to
indicate that the plume moved more radially in February than the plume observed in
October. Less recharge may allow the waste water plume to move outward in a more radial
manner. It has been shown that the potentiometric surface at this site is sloped toward the
Atlantic (Kump, 1996). Increased rainfall may increase this gradient, causing greater
southward advection of the plume. At times of little or no recharge, this potentiometric
gradient may be small enough to allow the waste water to move more east and west from
the injection well . Local winds could also effect the hydraulic gradient in this area. Winds
can act to force water in or out of the Bay thus steepening or lessening the hydraulic
gradient in this area.

 The remainder of the wells for the February experiment showed no signs of rapid
conduit flow. For the first day of the experiment, we closely monitored SF¢ concentrations
in most wells (1, 2, 3, 4, and 5) and tidal levels in the Atlantic. The SFg background
fluctuations at wells 2, 4 and 5 (all depths, Fig. 44, 46, 47) did show fluctuations that

may indicate tidal pumping. These results show that peak background SFg concentrations
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corresponded to a rising tide for the first day of the experiment (Fig. 53). After one day,
the sampling intervals were increased and/or newly injected SF¢ was observed in the wells,
thus the fine resolution was lost. Although wells 6 and 7 were only sampled every other
sampling round due to time constraints, they also lend support to the idea that tides play an
important part influencing groundwater flow in this region. The trends observed in
background SF¢ concentrations in all depths at these two wells match up perfectly with one
another (Fig. 48, 49). These two wells are approximately 40 m apart. The similarities
in trends suggest that a common mechanism, tidal pumping, may be responsible for their
observed fluctuations .

The concentrations measured in both the Bay and the canal across US-1 were near
the limit of detection; however, results from the Bay may due to tidal action. Fig. 50b
shows that for the first day of the experiment, SFg was only detectable in the Bay while the
tide was high in the Atlantic. It is difficult to evaluate whether these peaks are residual
background from the October experiment or from this injection. In either case, tidal
pumping may explain these results. The canal concentrations were measured less
frequently and showed no signs of tidal influences (Fig. 51). These concentrations in the

canal are an order of magnitude less than observed during the October experiment.

Discussion
A summary of calculated transport rates is shown in Table 12. These
results suggest that substances injected into the water Table beneath the Florida Keys has
the potential to travel rapidly through the porous limestone matrix. The septic tank results
from Big Pine Key suggest that during the time of these experiments the plumes from
septic tanks in this neighborhood move in an eastward direction. The lack of any large SFgq

peaks for site A (Fig. 29 a, b) suggests that the tracer did not travel west toward the well

39




at this site. Results from site B (Fig. 29¢), however, indicate that the plume here did
move toward that well, which lies approximately 27 m east of the septic tank's drainfield.

The rapid transport rate at this location (1.37 m/hr) is an order of magnitude higher

than the flow rate of 0.15 m/hr (3.7 m/day) reported by Lapointe (1990). Two plausible
explanations for this high transport rate are conduit / fracture flow or contamination during
the initial sparging process carried out just before injection. Although no cores were
available for examination from Big Pine Key, previous coring work done by Shinn et al.
(1994) at the Saddlebunch Keys show that some portions of cores collected had
unrecoverable portions in the upper 2 meters which could represent conduits, rubble, or
sand layers that could have a much higher hydraulic conductivity than Miami oolite. The
Saddlebunch Keys are located approximately 30 km west of Big Pine Key and are
considered to be in the same geological formation of Miami oolite. It is possible that
similar features could also be found at our site on Big Pine Key.

It is also possible that the SFg samples for this experiment could have been
contaminated by concentrated SF¢ gas. At site A, the sparging and subsequent injections
were conducted in a downstairs restroom that had a lot of windows and doors for
ventilation. These were left open while sparging the injection slug with concentrated SFg
gas. In addition, samples were collected from a sink on the second floor of the house so
the chances of contamination were greatly reduced. The house at site B was one leveled SO
the sparging process had to be conducted down the hall from the sink that was to be used to
collect samples from the well. In addition, the room where injection occurred had no
windows and may not have been well ventilated. It is possible that residual SFg gas from
the injection lingered in the house for several days and that the breakthrough curve
observed after injection was actually sample contamination while the house degassed. A
slower groundwater transport rate of 0.11 m/hr can be calculated from the small peak

observed after 10 days at site B. This agrees remarkably well with Lapointe's (1990)
40




estimate. This transport rate is most likely representative of the Miami oolite's primary
porosity.

The most rapid transport rates found in this study were during the simulated septic
tank experiments on Key Largo. Rates of groundwater transport were between 0.21 and
3.28 m/hr. The highest rate of transport was seen during the July '96 experiment when
the tidal amplitude of the Atlantic was the highest of the three experiments (Fig. 30). The
tidal amplitude in the Atlantic was 0.88 (+ 0.03) m during the July '96 experiment. The
next highest rates, 1.59 and 2.30 m/hr was observed during the August '96 experiment
when the tidal amplitude was 0.56 (£ 0.04) m (Fig. 31a). These observations indicate
that the rate of groundwater flow is controlled by the amplitude of the Atlantic tide. We
suggest that when the differences between high and low tides are largest, such as during a
spring tide, groundwater moves more rapidly. When the tidal variations are smaller (neap
tide), groundwater transport should be slower. It should be kept in mind that these
maximum flow rates represent an average of the flow rate over a tidal cycle. Flow rates
probably change dramatically over the course of a tidal cycle, responding to the changing
pressure heads as the Atlantic and Florida Bay water levels oscillate.

Groundwater flow rates can typically be calculated with Darcy's law:
v =(-K/n) * dh/dl 3

where v is the groundwater velocity, K is the hydraulic conductivity, n is the porosity, and
db/dl is the hydraulic gradient. If the velocity, porosity, and hydraulic gradient are known
then one can estimate K. The data from the Key Largo éxperiments indicates that the
hydraulic gradient varies over a tidal cycle. At high tide, we observed groundwater flow
towards the bay, indicating the hydraulic gradient is sloped to the north. At low tide, flow

was toward the Atlantic, suggesting the gradient was sloped toward the south. This

41




indicates that the gradient undergoes a reversal at some point in the tidal cycle. The
maximum Atlantic tidal amplitude observed on Key Largo was 0.88 m. If one assumes
that the Atlantic's mean tidal level is equal to the bay's mean water level, then one can
conclude that the greatest difference in the Atlantic and bay's water levels is 0.44 m at
extreme high or low tide, which would establish maximum hydraulic gradients of +1.02 *
10-3 (0.44 m /430 m). Using the highest and lowest rates of groundwater transport (3.28
and 0.27 m/hr), one can estimate two absolute values of K as 1602 and 131 m/hr,
respectively.

The low end of these hydraulic conductivity estimates for Key Largo Limestone is
twice the value of 60 m/hr (1440 mv/d) reported by Vacher et al. (1992). This estimate
was calculated by using equations of the Dupuit-Ghyben-Herzberg (DGH) analysis of the
fresh water lens underlying Big Pine Key. Hydraulic conductivity is a property that is
dependent on the permeability of the rock as well as the viscosity of the fluid moving
through it. In a karstic matrix such as Key Largo limestone, K could vary tremendously
depending on local geological features of the limestone (i.e. the presence or lack of
conduits). Obviously, a much broader range could be calculated with different estimates of
the hydraulic gradient. These estimates merely put a range on the possible values of K for
this region of Key Largo. Other methods of estimating K, such as with a permeameter or a
slug test, may give more precise estimates although these tests can also be affected by local
geological features. The best estimation would be based on a large scale area. Such a
calculation can be made for a confined aquifer using the tidal lag between a well and the
ocean and the well's distance from the ocean but no such equations have been developed
for an unconfined aquifer.

Numerous studies cite the large degree of secondary porosity in Key Largo
limestone (Vacher et al., 1992; Shinn et al., 1994; Halley et al., 1995). TheAmajority of the

flow through this formation is believed to be via channel or conduit flow. These conduits
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were originally formed as ancient coral reefs developed vertically. More recently, meteoric
diagenesis has contributed to the dissolution of calcium carbonate, resulting in further
development of secondary porosity. This increase in secondary porosity increases the
permeability of the Key Largo limestone and profoundly affects groundwater flow (Vacher
et al., 1992).

The lowest groundwater transport rates for these simulated septic tank experiments
were calculated from data obtained from the monitor well. As mentioned previously, these
values are most likely underestimations due to the bi-directional advection of the SF¢ laden
plume. During the July and August '96 experiments, injection occurred during a low
Atlantic tide. As a result, the SFg injected into the well initially moved toward the Bay as
the Atlantic tide rose. As the Atlantic tide fell, the plumes' movements turned to the south
and were subsequently detected in the monitor well during low or falling tides. For the last
experiment at this study site, injection was conducted close to high tide. This can be seen
in Fig. 32b as the large spike for the water level of the monitor well. Subsequent SFq
peaks in the monitor well were observed while the water level in the well was at its highest.
This is consistent with the two previous experiment, where peak SFg concentrations in the
monitor well were observed at the same tidal stage that existed when the injections
occurred. This suggests that over a tidal cycle, the net movement of the plumes is small
even though these plumes can travel a substantial distance in the course of a tidal cycle.

It is unclear why no SFg was detected in either the monitor well or the Bay after the
first injection of the August '96 experiment (Fig. 31b). A plausible explanation is that the
injected plume may have been so concentrated and narrow during the first tidal cycle that it
passed through the monitor well undetected between sampling rounds. As the experiment
continued, mechanical dispersion, along with diffusion, would tend to make the plume
larger and less concentrated. As the plume moved through the porous limestone, some of it

probably encountered pathways that were more or less hydraulically conductive. Dead end
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pore spaces could also trap some of the plume during it's movement. These differences in
permeability would tend to disperse the plume more and more with each passing tidal cycle.
The dispersive behavior of the plume may also explain some of the other results
from the August '96 and August '97 experiments. In each of these experiments, the SFg
peaks observed for the monitor well were larger the second time they were observed. The
results suggest that the SFg plumes did not completely travel across the monitor well during
these experiments. If they had, then there would be a double peak for the monitor well
each time the plume came in contact with the monitor well. One peak as the center of the
plume crossed the monitor well in one direction, followed closely by a second peak
observed after the tide turned and the most concentrated portion of the plume moved back
across the monitor well. Instead, there is only one peak for each associated extreme tide.
This suggests that the edge of both plumes came into contact with the monitor well, then
turned with the tide before the center of the plume could make it to the monitor well. As the
plume became more dispersed, a higher concentration of the edge of the plume may have
came in contact with the monitor well, resulting in a larger peak concentration of the tracer.
Background samples collected from the injection and monitor wells suggest that the
residence time of substances injected into the water Table can be quite long. No SFg
experiments were conducted at this site between August '96 and August '97 yet there were
still a residual concentration of 0.31 nM in the injection well. A background of 0.03 nM
was detected in the monitor well. The elevated value in the injection well could represent
SFe contamination of the well casing from the previous injections. In any event, these
concentrations are several orders of magnitude less concentrated than the maximum
concentration observed in the monitor well a year earlier. The concentrations of samples
from the Bay all reflect background values of less than 4 pM, approximately 20 times more
diluted than those collected a year earlier. Residual traces of SF6 were not detected in the

Bay before the August '96 experiment yet it was detected in the Bay before the August '97
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experiment. This was due to the fact the sampling technique was altered slightly between
the August '96 and August '97 experiments, resulting in a lower limit of detection.
Collecting samples in serum vials rather than glass syringes improved the lower limit of
detection by an order of magnitude due to a change in the water to nitrogen ratios used
during the extraction procedures for the two different sampling methods. In any case, the
these lingering concentrations of SFg suggest that substances put into the water table and
advected into marine surface water can persist for at least a year and can be continually
pumped into the Bay with each passing tidal cycle.

Results from the deep well injection experiments on Long Key show that horizontal
transport rates can range from less than 0.003 m/hr to as high as 1.72 m/hr. Vertical
transport rates are similar (<0.002 - 2.2 m/hr) due to the buoyancy of the plume. Local
recharge may partially control the dispersion of the plume. Heavy precipitation could
steepen the hydraulic gradient in this area, causing higher rates of southward advection.
During the second experiment, there was no significant precipitation. Lack of recharge
could lessen the hydraulic gradient on Long Key. Itis hypothesized that such a gradient
could allow radial dispersion of the waste water plume away from the injection well.
During dry periods, the Atlantic tide seems to be a driving mechanism for groundwater
transport. This isn't evident from the October data set when heavy rainfall seems to have
dominated the system. In February, however, the residual SFg from this first experiment
did show signs of tidal pumping. This indicates that both recharge and/or tides may effect
groundwater flow in this region, depending on local meteorological conditions. During the
course of these experiments, the meteorological conditions were extreme (i.e. very wet or
very dry) and may have allowed one or the other of these mechanisms to control
groundwater flow. During periods of moderate rainfall, both of these forces could

hypothetically influence the system simultaneously.
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The deep well injection experiments conducted at KML had the best well coverage
of the four sites used for this study with seven well clusters, each containing 4 wells of
different depths. This provided a much more detail picture of the fate of substances
injected into the aquifer underlying the Florida Keys than the experiments previously
discussed. This relatively extensive coverage made it possible to roughly estimate what
portion of the SFg injected could be accounted for by the results. The ease of which this
can be estimated depends on the physical characteristics of the aquifer itself as well as the
distribution of monitoring wells. In a homogeneous, isotropic aquifer that flows in only
one direction this calculation would be quite simple. Many plotting programs are currently
available for such applications. There are none; however, for a tidally driven, anisotropic
aquifer with three dimensional flow that is riddled with innumerable holes and conduits.
This structure is not only evident from the cores taken when these wells were drilled
(Kump, personal communication, 1996) but can be seen in the many canals that have been
cut into the Keys. One can see the remnants of ancient coral heads as well as cracks and
cavities that formed as these reefs developed vertically. Due to the heterogeneity of this
system, the buoyancy of the observed flow, and the limited distribution of monitoring
wells, it became impractical to use any available programs to quantify the observed plume.

For these reasons, the author chose to use a simple interpolation of the data by
essentially slicing up the study area into a stack of 8 pies and rings, each 2 m tall (Fig.
54). The volume represented in this method is cylindrical with a diameter of 20 m and a
height of 20 m and is centered around the injection well. Although the injection well is
screened from 20 to 30 meters, the data suggests that the plume rises vertically. The
shallowest component (above 5 m) of the plume could not be assessed because no data was
available above 5 m. Monitoring of the system was thus restricted to between 5 and 20 m.
This same restriction was used in the mass balance of SFg, thus the volume used for this

estimation was limited between 4m and 20m. Porosity was assumed to be 50% (Kump,
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personal communication). Several other assumptions had to be made in order to use this
technique. First, the system's matrix is heterogeneous and the plume spreads in a
dispersive manner as it rises. Another assumption is that a well located in a particular slice
is representative of the entire slice. This allows the known concentrations of individual
wells to be used to estimate the concentration of a particular volume in each piece of the
model that contains a well. The missing concentrations were then interpolated horizontally
around the pies and rings and then vertically throughout the rest of the cylinder. None of
these assumptions are completely correct but they do put some constraints on the problem
which allow some crude quantifications to be made.

These interpolations are shown in Appendixes 3 and 4. The calculations were
carried out for each sampling round of both experiments. Round 1 in the October '96
experiment isn't included. This round was conducted before injection as background and
the SFg concentrations were below detection at all wells. The estimated SFg for the first
experiment hovers between 19 and 34% of the injected amount for the first ten days (Fig.
55). After 17 and 20 days, this Fig. rises to 52 and 45%, respectively. After 46 days,
89% of the tracer could be accounted for by this method. After another month (t = 71
days), the estimation climbs to 144% of the injected amount. The values shown for the
first 10 days may be underestimated due to the fact that the concentrations for each pie slice
are based upon the outer edge of the pie, not the center. This is particularly true of the
deeper depths, close to where the injection enters the aquifer. The most concentrated
portion of the plume was probably located near the injection well and decreased with
distance from the injection well.

As time continued, this plume probably dispersed in a more even fashion. This
could lead to an overestimation in the later sampling rounds. This is due to the huge
volumes in the outer rings of the finite model. Monitoring wells were only located in three

of the eight outer rings. The remaining five rings had to be interpolated from these three.
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These outer rings have a huge volume and consequently even a small overestimation of
concentration can cause the estimated mass of SF to increase drastically. Data from these
experiments along with those conducted by Paul et al. (1997) indicate that tidal pumping
sloshes the plume back and forth (north-south). Consequently, the plume may not ever
reach the model's outer slices that are east and west of the injection well. This suggests the
estimations of the outer rings located east and west of the injection well may be gross
overestimates since the interpolations were made using data from wells 6 and 7, north and
south of the injection well.

In February, there was a background of less than 2 nM at all wells. These values
were used to obtain a total background which was then subtracted from the estimations for
the second experiment. Due to this background, the sensitivity for the outer wells (wells 5,
6, and 7) which presumably represent diffusive transport, was lost. For this reason, the
second trial was only monitored for 9 days. The first two sampling rounds were conducted
one and 2.6 hours after injection. These estimates were virtually the same as the
background estimate, indicating that a significant portion of the plume hadn't yet reached
the monitoring wells. After six hours, the estimated amount of SF¢ began rising (54%)
and continued to climb until 11 hours when a maximum of 164% of the injected mass was
accountable (Fig. 56). Over the next 30 hours the estimate dropped to 74%, then
fluctuated between 66 and 140% for the remainder of the experiment. Although crude and
rather elementary, this method shows that a significant portion of tracer injected can be

accounted for with the well coverage at this location.

SUMMARY

48




Surface waters in and around the Florida Keys have experienced rapid decline in the
last decade. There is not a simple explanation to describe this change. The research
performed over the last two years and described here may offer some insight into part of
the problem. Groundwater in the Keys maybe a potential contributor of nutrients to surface
waters. Although the ultimate detrimental impact of groundwater is difficult to assess, it
has been shown through this research that groundwater moving into surface waters,
especially near the Keys. Natural tracers are consistent with the hypothesis that waters
closest to the Keys receive more groundwater than other locations within Florida Bay and
along the reef tract. Wastewater disposal directly into subsurface waters can potentially
increase nutrient concentrations within these waters. Nutrient analyses show elevated
nutrient concentrations in groundwater and spring water relative to surface waters.

Artificial tracers were used to make a direct link between wastewater and surface
waters and to provide information and transport rates, direction, and dilution rates. In
general, it appears that transport rates and direction can differ throughout the Keys due to
changes in local geology, rainfall and tidal levels. Transport direction at the study sites on
Big Pine Key seems to be eastward in orientation and is probably dependent on the
hydraulic gradient established by local recharge to the freshwater lens. Transport directions
probably vary across Big Pine Key, depending on location. Conduit flow or contamination
are the most likely explanations for the rapid transport, 1.37 m/hr observed at site B. The
lower estimate of 0.11 m/hr is comparable to that presented by Lapointe et al. (1990) and
most likely represents the primary porosity of Miami oolite.

The most rapid groundwater transport rates were observed during the simulated
septic tank experiments on Key Largo. Rates were as high as 3.28 m/hr and were closely
coupled to the Atlantic tide. Directions of groundwater transport were north/south in
orientation. The observed plumes shifted directions as the Atlantic tide rose and fell. As

this "sloshing"” movement continued, the plume was dispersed more and more. The rate of
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transport is influenced by tidal amplitude with the highest rates corresponding to maximum

tidal variations such as those observed during a spring tide. The high transport rates are an

order of magnitude higher than the calculated hydraulic conductivity and are more indicative
of a system that is dominated by conduit or fracture flow.

The deep well injection experiments conducted on Long Key illustrate the buoyancy
of low salinity wastewaters injected into the saline aquifer. Vertical flow rates were
comparable to horizontal rates. Due to the more extensive well coverage at this location,
two types of transport were observed. The rapid flow rates (0.22 - 2.20 m/hr) represent
conduit flow while the slower rates (< 0.03 m/hr) are representative of the diffusive flow
associated with the limestone's primary porosity. Both precipitation and tides may be
major mechanisms controlling groundwater transport at this location. Less recharge to the
system may result in a more radial dispersion of the wastewater plume while high recharge
rates may result in the plume being advected towards the south more rapidly. Obviously,
more experiments need to be conducted at this or similar sites during the wet and dry
seasons to accurately describe the effects of recharge on groundwater movement.

Determination of the amount of dilution that occurs before contaminated
groundwaters reach nearby surface waters was also addressed . Results from Long Key
indicate that by the time substances injected into the water table reach nearby surface waters
they are diluted by six orders of magnitude or more. This dilution rate is representative of
the processes that act to dilute SFg at this location only. Dilution must be factored by the
input amount of nutrients. High dilution along with a high flux could still allow the
delivery of significant quantities of nutrients to surface waters. The maximum SFg
concentrations observed in the Bay during the Key Largo experiments (85 and 71 pM)
were generally much higher than those concentrations observed in surface waters during

the Long Key experiments, suggesting a lower dilution rate. However, dilution rates could

not be calculated at this location due to the injection method. Dilution rates could be
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dramatically different at other locations. It is unclear how reactive substances, such as
phosphates and dissolved nitrogenous compounds, are effected by subsurface processes of
adsorption, dilution and/or degradation. Several other studies currently being conducted in
the Keys are investigating the behavior of these reactive substances (FSU, Penn State, and
USGS). However, it is clear from the results that no matter which disposal method is used,
some contaminates have the ability to reach surficial waters on a short timescale of hours to

days.
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Table 1. Comparison of peak heights between old standards stored in vacutainers
and newly prepared standards. Results for each aged standard are given as
percentage of fresh standard, averaged from 2 injections from the same vacutainer.
Standard deviation of injections is also shown.

Age (days) % of new standard standard deviation (%)

7 100.0 0.31
71 94.1 0.52
118 98.7 --

281 97.5 3.75
281 100.3 1.84
281 97.4 0.81
489 96.4 2.24
489 100.9 0.05
489 99.2 2.65
511 100.8 1.88
511 99.8 1.72
511 99.4 2.32




Table 2. Comparison of SF extraction efficiencies for samples collected in Vacutainers

(Vac) and serum vials (SV).
sample Lst extraction 2nd extraction Extraction
container peak height peak height Efficiency (%)
Vac 1331959 10371 99.23
Vac 161575 0 100.00
Vac 158887 0 100.00
Vac 162762 0 100.00
SV 47404 2087 95.78
SV 2504586 43065 98.31
SV 87427 3601 96.04
SV 3041126 46909 98.48

SV 81539 2369 97.18




Table 3: Natural tracer concentrations in groundwater wells.

Date/Site Rn-222 Methane Ethylene
(dpm/L) (nM) (nM)
—_— e
February 1995
NURC, Key Largo 5376 96+ 110
(n=2) (n=2)
April 1995
Offshore Wells, Atlanic-Side 455+ 124 465 £ 498
(n=12) (n=11)
Offshore Wells, Bay-Side 641 + 293 655 £ 212
(n=3) (n=3)
Ranger Station, Key Largo 338 + 67 322 +244
(n=2) (n=2)
May 1996
Keys Marine Lab, Long Key 245+ 69 998 £ 712
(n=28) (n=2)
Ranger Station, Key Largo 442 + 141
(n=2)
December 1996
Offshore Wells, Bay-Side 615 £+ 237 2520+ 4756 15+23
(n=16) (n=16) (n=15)
June 1997 .
Offshore Wells, Bay-Side 294 + 59 545 + 499
(n=28) (n=28)
Total Average= — 398+ 208 1241 + 2997 15+
(n=73) (n=44) (n=15)
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Table 4: Continued.

BS#m ] 30-Jun-97 ] 2506 | -80.92 | 196 £]0.07 5.95] % 0.21 7.91]+]0.22 28.55 5.02] £10.26
BS#72 | 30-Jun-97 | 25.01 | -80.92  1.49] 005 5.55| + |0.18 7.04/+l0.19 16.05 3.73| £/0.30
BS #73 | 80-Jun-97 | 24.99 | -80.87 | 147| £ [0.06 3.19/+|0.15 |  4.66|+[0.16 28.47 440/ tj0.16
BS#74 | 80-Jun-97 | 24.98 | -80.79 1.66| + 10.06 3.03/+(0.14 4.68/£(0.15 | 10.85 4.44| |0.40
BS #75 | 80-Jun-97 | 2497 | -80.69 | 1.74| £[0.05 2.12[+ 0.12 3.85/+0.13 7.03 2.78| +/0.43
- L | Average: | 140 046 | 221|143 3.61|+/1.57 16.53/+ (8.96 1.28) +|1.52
) __ Key-BaySide | = — T L
Hammer Point Basin M. | 1-Mar-95 25.45 -80.52 1.31] £ 0.05 | ‘?@NW@wwoJx _5.48/+/0.21 | 21.25/+ |10.09 210
Tavernier Basin 7ft. 1-Mar-95 25.00 | -80.54 | 1.05/+(0.04 | 6.36/+|0.22 _7.42]+]0.22 | 43.43|+ |0.65 298 |
Little Buttonwood Sound 2-Mar-95 | 25.14 | -80.35 | 1.09/+[0.04 | 4.08/+[0.19 | 5.16/[0.19 _ 28.64/+ [0.60 1.04+0.03
Tarpon Basin 1.0m 2-Mar-95 25.12 | -80.43 | 1.66| + (0.06 | 3.73/410.20 | 5.38/+/0.21 | 30.82]+ |0.48 | 3.50 o
Tarpon Basin 2.0m 2-Mar-95 25.12 -80.43 | 1.55| +0.05 | 4.82(+0.22 | 6.37|t 0.22 | 32.52|+(0.75 | 2.67] |
Sheraton #1 10/23/95 (~2.5) Oct. 95 25.07 | -80.47 | 0.28/+0.03 | 7.29/+/0.17 | 7.57/t|o.18 | 28.17 +16.90 | 112 |
Sheraton #2 10/23/95 (~3) Oct. 95 25.07 | -80.47 1.48/ £ [0.06 | 564/+0.18 | 7.12/+/0.19 | 28.26/+ |5.73 | 1.32 -
Sheraton #3 10/23/95 (~4) Oct. 95 25.07 | -80.47 | 1.53/+0.06 | 5.90/+0.18 | 7.43[x[0.19 | 27.19]+ |1 75 | 1.82] |
Sheraton #4 10/23/95 (~5) Oct. 95 25.07 | -80.47 | 1.64/+/0.06 | 5.22/+/0.17 | 6.86/t0.18 | 25.22[+ |0 79 | 170 |
FB_#21 Hammer Pt. 10/30/95 Oct. 95 25.45 | -80.52 | 1.75|+ (0.06 | 2.51/+(0.13 _4.26|+10.15 | 24.50|+ |0.84 091 | _
Hammer Point 10/23/95 (4) Oct. 95 25.45 | -80.52 | 0.37| + [0.03 | 5.05 +10.14 | 5.42|+10.14 | 39.78/+ |5.91 | o8 |
Hammer Point 10/24/95 (~3) Oct. 95 25.45 | -80.52 | 1.48|+[0.06 | 6.46/+(0.20 | 7.94t[0.21 | 31.74|t 252 | 1.11]
Hammer Point 10/26/95 (3.5) Oct. 95 25.45 | -80.52 | 1.25/+0.03 | 5.49/+(0.17 | 6.74+/0.17 | 42.34]t |2 45 | 190 |
Hammer Point #1 10/27/95 Oct. 95 25.45 | -80.52 | 1.7/ +10.05 | 5.07(+[0.16 | 6.24[t|0.17 | 38.40|+ |0.63 ERE -
Hammer Point #2 10/27/95 Oct. 95 25.45 | -80.52 1.33/ £ 10.05 | 6.03/+(0.18 | 7.36/x(0.19 | 37.71]+ | | 1.18 1
[Hammer Point #3 10/27/95 Oct. 95 | 25.45 | -80.52 | 1.14|+/0.05 | 6.16/+[0.18 | 7.30/%/0.19 _4360[+ |3.76 | 1.28] |
Hammer Point #4 10/27/95 Oct. 95 25.45 | -80.52 | 1.24/+[0.05 | 6.47(+[0.18 | 7.71[+|0.19 | 44.96]+ |1.90 122 |
FB #24 Buttonwood Sound Oct. 95 25.12 | -80.44 1.80( + 10.07 | 3.54/+[0.16 | 5.34[+[0.17 | 8s.62/+ [13.95 | 1.32] | B
FB#26 Tarpon Basin 10/30/95 Oct. 95 25.12 | -80.42 | 3.08/+0.09 | 2.21/+0.18 | 5.29/+/0.20 | 65.45/+ 0.53 | 1.21] |
FB#27 Stellrich Point 10/30/95 Oct. 95 | 25.16 | -80.40 | 1.42|+/0.06 | 5.70/+0.18 | 7.12]+/0.19 _77.02[+ |4.93 414 |
FB #28 Sexton Cove Oct. 95 2517 | -80.39 | 1.40/+[0.05 | 1.21/xl0.10 | 2.61[t|o.11 | 80.72[+ 4.26 | 1.24] |
FB #30 Tavernier Basin (~6) Oct. 95 | 25.00 | -80.54 | 1.22|+ [0.06 | 0.47,+10.09 | 1.69/+|0.11 _14.48/+ |0.94 0.78| | _
FB #37A Tarpon Basin Oct. 95 25.12 | -80.43 1.42/ £ 10.06 | 1.32/+/0.11 | 2.74/+/0.13 | 47.17]+ [8.28 | 0.51| | o
IFB#37 Blackwater S. 10/31/95 Oct. 95 25.19 | -80.42 | 1.33]+(0.05 | 3.44/+[0.13 | 4.77]+[0.14 | 53.89+ |0.25 1 11s o
FB#38 B.water Sound SE Oct. 95 2515 | -80.41 | 1.02| + 0.06 | 1.10/+|0.10 | _2.12/£]0.12 | 22.09|+ |0.31 0.41 .
FB #39 B.water Sound-Rowells Oct. 95 2515 | -80.40 | 1.31/%10.08 | 4.56/+/0.18 | 5.87/+[0.20 | 53.78s 0.65 | 1.14] |
Tavernier 10/24/95 (~4) Oct. 95 25.01 "80.55 | 1.27/+)0.06 | 5.22|+[0.17 | 6.49/+/0.18 | 75.97)+ 24 |
[FB #46 Rock Harbor Oct. 95 25.08 | -80.47 1.72] + [0.06_| 6.51/+/0.20 | 8.23+/0.21 | 36.29]+ . 0.68/+0.07
FB #47 Pigeon Key 11/1/95 Oct. 95 25.04 | -80.51 | 1.32/+(0.06 | 2.58/+0.12 | 3.90[+/0.14 | 16.82]+ ] 0.56[+0.07
FB #53 Mid. Matecumbe Oct. 95 24.94 | -80.64 0.62| + 10.04 | 1.96/+/0.11 | 2.58[+[0.11 | 22.68|x |1.1 0.50 -
FB #54 islamorada Oct. 95 | 24.93 | -80.63 0.61/ +10.04 | 3.71/+/0.15 | 4.32(+(0.16 | 45.44]+ |0.91 083 |
UMK #1 (8) Oct. 95 24.94 | -80.62 | 0.73)+(0.05 | 1.38/+[0.09 | 2.11/£/0.10 | 22.99|+ 10.38 0.55/+|0.05
UMK #2 (~6) Oct. 95 24.94 | -80.62 0.83] + [0.05 1.85] + [0.09 2.68/+/0.10 35.55(+ [1.93 0.56/+[0.05




Table 4: Continued.

UMK 10/24/95 (-3) | Oct 95 Tf jo.05 [ 1.78[+]o10 | 2.64/£/0.11 | 39.24/+ [0.42 | 0.88] |
UMK 10/27/95 (-3) | Oct. 95 | (£10.02 | 3.66/+10.11 | 4.34/+/0.11 | 47.96|+ [3.40 120
BS#1__ | 7-May96 | #1007 | 1.33[+]0.09 | 2.59/+/0.11 | 13.05]+ I
BS#3 | 7-May-96 | ++1008 | 4.87/+[0.18 | 6.78|+[0.20 | 15.56|% t0.63
Bs#a | 8May96 £10.06 | 1.94/+10.13 | 4.50(+0.14 | 21.06|+ ¢ o
BS#5 | 8May96 | £10.08 | 3.87/+0.16 | 5.78/+0.18 | 23.88 |

Bsw6 | &May96 | 2507 -go. 1911+ 10.08 | 3.00/+/0.14 | 4.91/4/0.16 | 23.18+ }
Bs#7 | 8May-96 | 25.06] -80.48| 1.91) £ 10.08 | 3.67/4/0.15 | 5.58/+(0.17 | 17.75|+ | N
BS#8 | 8May9s | 2507 -80.47| 1.87 |+ 10.08 | 3.68/+]019 | 5.54|+0.21 | 14.83|4: t10.11
BS#9 ;. 8May-96 | 2504| -80.51) 1.76] +[0.06 | 0.82|+0.11 ~ 2.58/+/0.13 | 12.20+ B
BS#t0 | 8-May-96 | 25.03| -80.51| 1.59/#0.07 | 221+ 0.15 | 3.80[#(0.17 | 14.36|+ $10.28
BS#11 | 8May96 | 25.03] -80.51 _1.65]+ 10.08 | 5.35[+/0.22 | 7.01(%/0.23 | 106.29)+ | $]0.49
BS#18 | 8May96 | 25.02] .80.51 169/ %1007 | 5.19/+]0.17 | 6.88/+/0.18 | 29.10|+ $10.62
BS#1Ss | 8May96 | 24.98] -80.56] 0.7 31 £10.05 | 1.21/410.08 | 1.93|%/0.09 | 15.24]+ 2% 10.14
BS#16 | 8-May-96 | 24.96) -80.57) 0.73|+[0.05 | 1.23[+[0.08 | 1.96/£/0.09 | 17.04)+ I
BS#18 | 9-May-96 | 25.07 -80.47| 1.80|+ [0.08 | 4.25+0.14 | 6.05/+10.16 | 23.77 +10.36
BS#19 | 10-May-96 | 25.07) -80.47| 1.80| + [0.08 | 4.49%0.15 | 6.30{+[0.17 | 19.50 N
BS#20 14-May-96 |  25.07|  -80.47] 2.04+[0.07 | 8.90|+[0.25 | 10.94/+/0.26 40.21 + 10.49

BS#21 14-May-96 25.06|  -80.48] 2.07
BS#22 6-Aug-96 24.81|  -80.84| 0.58
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BS#23 6-Aug-96 24.82|  -80.83| 0.74/+[0.04 | 1.34]+ [0.10 | 2.08[+[0.11 pA2azisy 0
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BS#27 - 6-Aug-96 | 24.84) -80.81| 1.08|+[0.06 | 0.88]+ [0.13 | 1.96/410.14 | 1156/+) | | |
BS #76 1-Jul-97 | 24.97 | -80.56 | 137/ £[005 | 2.30+(0.13 | 3.67/+0.14 36.36 14.20| +10.59

BS #77 1-Jul-97 24.97 -80.56 1.28

BS #78 1Jul-97 | 25.00 | -80.54 | 1.75
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BS #84 197 | 2516 | -80.40 | 1981 +/004 | 234[x[0.13 | 432(+o.13 | 4063|+] | 1543 035
i | Average: | 1.44| + 061 | 389+221 | 532(+[249 | 3535/t 2045 | 392 +/555
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FB #36 Long Sound 10/31/95 Oct. 95 25.23 -80.48 0.75

FB #41 L. BWS Oct. 95 25.21 | -80.44 0.12

FB #58 Bradley Key Oct. 95 25.12 -80.95 0.91

FB #59 Flamingo Key Oct. 95 25.13 -80.92 0.68
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Table 4: Continued.

FB #60 Tin Can Channel conf Ot 95 | 2513 | -80.86 | 1.21/+00.05 | 0.32[+]0.07 | 1.53]:]0.08 | 29.21|« [1.67 | 0.69/210.04
BS #34 - 24-Jun-97 | 25.18 | -80.57 | 1.31)+ 006 | 1.91|[0.11 | 3.22/+jo.13 |  834] | | 166 ‘
BS #35 - | 24-Jun-97 | 2518 | -80.59 | 143/ (007 | 3.66/+(0.15 | 5.09|+{0.16 | 1387 ‘ 235/ +/0.66
BS #36 | 24-dun-97 | 25.18 | -80.61 138/ +1006 | 2.43|+lo.12 | 380tjo.14 | 1537 1.66] +(0.09
BS#37 | 24-Jun-97 | 2514 | -80.64 | .83 |0.08 1.59/+(0.14 | 3.42/t|0.16 | 801 2.24/1(0.63
BS #38 . | 24dun-97 | 2514 | -80.62 | 215/ %+ 008 | 1.27|+[0.13 | 3.42+)0.15 | 643 | | 158/ +l0.66
BS #41 | 25Jun-97 | 2511 | -81.03 | 178/ +[007 | 1.05/%|0.12 | 2.83[+[0.14 | 11.64] | 291]+]0.15
BS #42 25-Jun-97 | 25.11 | -81.09 | 1.81|+/007 | 1.12[:xl0.12 | 2.93/«[0.14 | 1022 ‘ 186 |
BS #44 25-Jun-97 | 25.09 | -81.00 1611 £0.10 | 3.19/+(017 | 4.80[¢(0.20 | 1464] | | 2.78%|055
BS #44 25-Jun-97 | 25.09 | -81.00 161/ +1010 | 2.56|+|0.15 | 4.17]tjo1s | ]
BS #46 25-Jun-97 | 25.12 | -80.83 162 £1008 | 1.52[+[0.12 | 3.1alt[o1a | 1550] | | 248/%l05s
BS #46" 25-Jun-97 | 25.12 | -80.83 1.62 + /0.08 1.56/+,0.12 | 3.a8j«jo.15 | (| T
BS #48 26-Jun-97 | 25.11 | -80.72 1.82| +10.08 | 2.98/+[0.15 | 4.80|x[0.17 | 23.55| 1.87) £]0.26
BS #64 30-Jun-97 | 25.11 | -80.79 163| 1007 | 2.15/+(0.13 | 3.79/xl0.15 | 71.61| | | 462/21052
BS #65 30-Jun-97 | 25.14 | -80.81 1.75] +(0.07 2.90/%/0.16 | 4.64/:(017 | 2171] | | 327/+[033
BS #66 30-Jun-97 | 25.13 | -80.81 1.74] + 10.06 2.51/+(0.14 | 4.25[+/0.16 1384 | | 225%[034
BS #67 30-Jun-97 | 25.11 | -80.74 0.57] + [0.03 2.74/+10.10 | 3.31|xlo.11 | 22301 | | 447/%]030
BS #68 30-Jun-97 | 25.12 | -80.90 229 + /007 3.06/£|0.16 | 5.35(+[0.18 | 1654| | | 230/+]028
BS #69 30-Jun-97 | 25.12 | -80.93 1.87) £1007 | 3.25/+/0.17 | s5.13/+o.19 | 11.00] | | 2.15[+[0.55
BS #70 . 30-Jun-97 | 25.11 | -80.95 1.91] +0.06 2.39/+]0.14 | 4.30([0.15 | 649 | | 149/+[043
Average: | 1.48) + 053 | 2.11/+0.90 359|+[L11 | 27.31]% 4637 | 2.22[+[1.05
Mid North East L B I D R N P T
FB #31 Elbow 10/31/95 Oct. 95 | 25.02 | -80.51 1.62] + [0.06 1.15(£10.10 | 2.77/+/0.12 | 21.84/+ [1.02 | 0.51] |
FB #32 East Bay 10/31/95 Oct. 95 25.18 | -80.46 1.37| + [0.06 0.94| +[0.10 2.31]#/0.12 |  8.56|+ [0.21 | 0.28/+]0.01
FB #33 Shell Key Oct. 95 | 25.19 | -80.45 1.54/ + 10.06 | 4.16/+[0.16 | 5.70//0.17 | 16.76|+ |3.64 | 0.30| |
FB #34 Snipe Point 10/31/95 Oct. 95 25.20 | -80.51 1.39) + 10.06 | 6.54/+]0.19 | 7.93|+/0.20 | 18.52|+ [1.80 | 0.42/+[0.09
FB #35 Stump Pass 10/31/95 Oct. 95 | 25.20 | -80.54 | 0.67 % [0.05 | 4.13]+0.14 | 4.80|¢] + (100 | o021 |
FB #40 Mid BWS Oct. 95 | 25.18 | -80.42 1.34| + /0.06 | 0.43]+(0.09 | 1.77[: N e
FB #42 Duck Key Oct. 95 | 25.18 | -80.50 1.55/ + 10.05 | 1.45/+[0.10 | 3.00]t I
FB #43 Eagle Key Oct. 95 | 25.15 | -80.59 1.34| + [0.06 | 1.16|+]0.11 | 2.50[¢ ot | [
FB #44 Nest Key Oct. 95 | 25.14 | -80.52 1.57| £ [0.05 | 1.62[+0.11 | 3.19[] + 019 | o019 |
FB #45 Porjoe Key Oct. 95 | 25.14 | -80.48 | 0.51+[0.03 | 2.63+[0.10 | 3.14]+]0.10 +1021 | o035 |
BS#17 9-May-96 | 25.14 |  -80.47] 2.22[+ |0.11 0.23[ [0.10 | 2.46¢ +023 | ||
BS #28 | 24-dun-97 | 25.18 | -80.46 227/ £/008 | 3.40[%[0.17 | 5674 1.86{ £[0.22
BS #29 24-Jun-97 | 25.18 | -80.48 270 1009 | 1.33[+0.15 | 4.03[« - )| 0.
BS #30 24-Jun-97 | 25.18 | -80.50 215/ +1008 | 1.19/+[0.13 | 333/: e 0.
BS #31 24-Jun-97 | 25.18 | -80.51 2.57] £10.10 0.79/+(0.16 |  3.35|+ ) ]
BS #31* 24-Jun-97 | 25.18 | -80.51 260| £1009 | o.70[+j0.14 | 330sj0.16 | | |
BS #32 24-Jun-97 | 25.18 | -80.53 243 +(0.08 0.77[+[0.13 | 3.20[]0.16 6.23] |




Table 4: Continued.

BS #33 24-Jun-97 | 2517 | -80.55 231
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BS#39 | 24uuno7 | 2514 | 8061 | 233 +/009 | 169]+016 | 403)s]o. 18| 760 315[%142
B 0 [ 2%Juno7 | 2514 | 8059 | 235 +10.08 | 0.66/+[0.13 | 3 OLixjo.15 | 4.92 | 236/2/045
+[0.12 | 2.45[t]0.14 3.93 1.29/+10.46
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BS#SS [ 2697 | 2540 | 8057 | 134007 | oa3s|slots | 473clots | 7o

BS#54 .. | 26-Jun-97 | 25.10 | -80.55 | 245/ +0.10 | 4.20/x|0.20 | 674/tlo.22 | 858/ 1.73| £[0.30
BS#55 " | 26Jun-o7 | 25.14 8055 | 1.69| £1008 | 6.07|%[0.20 | 776t[o.21 | 13.11 1.62| +(0.05
BS#6 [ 26Jun97 | 2514 | -80.53 | 310/ £[012 | 0.00[£[0.17 | 310|tjo.21 | T 423 240/ +/0.90
Bs#s7 [ 26uuno7| 2510 | 8053 | 266/ £/0.07 | o60|x|o22 | 326ls028" 468 | 1.91) %024

BS #57* 26-Jun-97 | 2510 | -80.53 | 2.66
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BS #59 | B7un-97 | 25.14 | -80.47 | 254/ %009 | 4.09/%[0.19 | 6.63[:)0.21 | 3584 2.85/+[044
oS 1ubo7 | 2521 | 8045 | 153/%005 | 8.67/+)0.15 | 5.19/«[0.16 | 2252| [ | 483%|i.60
BS #87 ) . 1Juke7 | 2518 | -80.42 | 215/ 41006 | 5.55/+|0.21 | 7.70[+0.22 | 56.04 | 7:20{+/0.05
- T average: | 1.96|+ [0.63 | 2.20/z|1.88 | 4.16x 1.75 | 12.88)x [11.13 | 1.84[+ [1.50

Miscellaneous

Tavernier Hole 10/23/95 Oct. 95 | 25.00 | -80.54 | 0.36|+/0.02 | 13.12]+(0.28 | 13.48/+0.28 _89.97|+ 10.28 | 1.57|+ [0.05
Tavernier Hole 10/24/95 (~12) Oct. 95 | 25.01 | -80.55 | 1.78|+ [0.07 | 19.80|+/0.43 | 21.58|+[0.44 _288.89]+ 17.62 | 1.84|+ [0.00
Tavernier Hole 10/26/95 (~15) Oct. 95| 25.01 | -80.55 | 5.67|+10.15 | 0.86|+[0.24 | 6.53]+/0.29 2029.21) | | | 1
Tavernier Hole 10/26/95 (10) Oct. 95 | 25.01 | -80.55 | 1.86| +[0.06 | 21.29|+[0.08 | 23.15/%0.10 {..466.42/+ 150.60 | 2.25| |
Tavernier Hole 10/26/95 (16) Oct. 95 | 25.01 | -80.55 | 7.58|+0.14 |120.86|+|2.36 | 128.44/:|2.36 2196.00/+ |67.24 | 2.80| |
Tavernier Hole10/26/95*(dup) Oct. 95 | 25.01 | -80.55 217, % 10.04 | 22.49/+/049 | 24.66/xl049 | | | | [
Tavernier Hole10/26/95 (12) Oct. 95 | 25.01 | -80.55 | 1.75|+[0.06 | 21.54|+/0.46 | 23.29|+[0.47 456.62/+ |42.08 | 2.47| |
FB #29 Tavemier Hole (~3m) Oct. 95 | 25.01 | -80.55 | 2.75|+[0.09 | 18.81)+/0.46 | 21.56]+|0.47 959.55/+ 145.95 | 3.41[+ [0.21
FB #25 Tarpon Basin Canal Oct. 95 | 25.11 | -80.43 | 1.38| + [0.06 8.96]+/0.24 | 10.34]+|0.24 | 562.26|+ (93.43 | 2.80

|
|
|
|
|
|
|
|
|
f
\

FB #22 Hammer Pt. Canal Oct. 95 25.03 | -80.51 1.40|
FB #48 Hammer Point Canal Oct. 95 25.03 -80.51 6.14

Snake Creek #1 (~10) Oct. 95 24.96 | -80.59 0.63

Snake Creek #2 Oct. 95 24.96 -80.59 0.58
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Snake Creek #3 10/23/95 (8) Oct. 95 2496 | -80.59 | 0.15| % |0.0 €| 3.96/+0.10 | 3.71/+/0.10 | 25 t C
Tavernier Basin 10/23/95 Oct. 95 mmb@.\J.‘-mo”mla\\,bmpm 0.06 | 26.64)+ 0.54 28.14|+ 0.55  5568.22|+ 371.00 | 2.75| 0.08
BS#2 7-May-96 | 25.00 | -80.54 1.41/ £ 10.06 | 4.72|%]0.14 | 6.12(+/0.15 | S87.07; | | 3.05[+ |0.09
BS#12 8-May-96 25.03 -80.51 2.18; + 10.08 16.44| + |0.38 | 18.62|+ 0.39 | 466.87 __{._ | 6.40/+ |0.25
BS#14 8-May-96 25.03 -80.51 1.76 + |0.09 | 18.27|+|0.41 | 20.03|+|0.42 | 742.40| | | 4.03]1(0.09
Reef Side | N - N

RS#1 6-May-96 |25 04.42] 80 2345 | 0.22[+ 0.02 | 0.41't l0.04 | 0.63210.04 | 11.59]+ 11,57




Table 4: Continued.

RS#2 ] 6-May-96 | 25 00.89| 80 22.61 0.22| £10.02 | 0.02|+ |0.03 | 0.23|+/0.03 | 4.91]+ 0.19 1L
RS#3 v 6-May-96 |25 01.42| 80 23.45 0.22/ £ {0.02 | 0.66/+ |0.03 | 0.88(+|0.04 _8.33|+ |0.07 ol _
RS#4 } 6-May-96 |25 01.80| 80 24.12 0.16/ £10.02 | 0.72/+ |0.04 | 0.88/+|0.04 | 9.48]+ 0.05 ] )
RS#5 6-May-96 | 25 03.44| 80 26.90 0.16/ £ 10.02 | 0.49/t |0.04 | 0.65/+|0.05 | 9.32|+ 0.29 ) )
RS#6 6-May-96 |25 04.17| 80 27.46 0.64| £ 10.02 | 1.23/+ 10.07 | 1.87|+|0.07 | 10.89|+ 0.35 _ -
RS#7 . | 6-May-96 |25 03.89)| 80 27.95 | 0.64| + |0.02 | 1.51+ 10.05 | 2.15/+/0.06 |  8.73| [0.04 L]
RS#8 _ 6-May-96 |25 03.54| 80 28.32 0.42/ + 10.03 | 0.66/+ |0.04 | 1.07|+{0.05 | 7.21|+ |0.51 o
RS#9 7-May-96 |25 02.61| 80 29.04 0.61| £ 10.02 | 0.60|+ |0.04 | 1.21/+/0.05 | 5.58% 0.23 5.97! [0.47
RS#10 7-May-96 |25 00.84| 80 30.25 0.94/ £ 10.05 | 0.74}+ |0.07 | 1.68/+(0.09 | 9.41|+ [0.76 I IR O R
RS#11 7-May-96 |25 00.55| 80 30.76 1.04] + |0.06 | 1.98|+ [0.11 | 3.02/+/0.13 | 14.74[+ 037 | | |
RS#12 7-May-96 |25 00.30| 80 30.95 0.86| + [0.05 1.04|+ [0.09 1.90|+j0.10 | 8.27+1003 | | |
RS#13 7-May-96 |24 59.56| 80 29.77 0.31] + |0.04 0.29|+ |0.06 0.60)+|0.07 6.36/+ |10.35 | L
RS#14 9-May-96 |25 04.17| 80 27.65 0.59| + [0.04 0.57|+ |0.06 1.17|£/0.08 ;  8.30|+ (0.51 I
RS#14 9-May-96 |25 04.17| 80 27.65 0.58| + |0.05 0.76|+ [0.08 1.34|4|0.09 S = R D A
RS#15 10-May-96 |25 04.17| 80 27.65 0.61| + [0.05 0.87|+ [0.07 1.48|£/0.08 |  8.59|+ 031 1 b1
RS#16 10-May-96 | 25 04.17| 80 27.65 0.61| + (0.05 1.01}+ 10.07 | 1.61)+]0.08 | 8.30(+ 0.13 | | | o
[RS#17 10-May-96 | 25 06.65| 80 20.50 0.42| + [0.04 0.23/+ |0.05 | 0.65/+|0.06 _9.82]1+ 0.03_ | | |
RS#18 10-May-96 | 25 06.72| 80 18.32 0.24, + |0.04 0.00/+ [0.04 | 0.24|+|0.05 | 483+ 1163 | | |
RS#19 10-May-96 |25 07.46| 80 18.00 0.18| + 0.03 0.10/+ |0.04 | 0.27(+/0.05 | 4.47)+ 1053 | | |
RS#20 10-May-96 {25 08.11| 80 19.22 0.27! + |0.03 0.25|+ [0.04 0.52|+|0.06 9.96(+ |0.17 | | B
RS#21 10-May-96 |25 08.23| 80 22.07 0.45| + 10.04 | 0.00/+ |0.05 0.45/+/0.06 |  4.13|+ [0.23 N N
RS#22 12-May-96 |25 12.99| 80 17.33 0.25| + |0.02 0.47|+ |0.05 0.71|+)/0.05 13.90/+ |0.96 | o
RS#23 12-May-96 |25 13.27| 80 15.82 0.23| £ 0.02 0.75(+ |0.05 0.97(+/0.06 | 11.93/+ 10.23 | | |
RS#24 12-May-96 |25 13.42| 80 13.01 0.27| + |0.02 0.28|+ [0.04 0.54|+/0.05 |  6.16|+ (0.25 N
RS#25 12-May-96 |25 16.41| 80 12.51 0.29| + (0.03 0.19/+ |0.04 0.48/+10.05 | 567+ 009 | | |
RS#26 12-May-96 |25 16.28| 80 13.91 0.31] £+ |0.02 0.22|+ [0.05 0.53/#.0.05 ; 10.54]+ 035 | | |
RS#27 12-May-96 |25 16.81] 80 16.76 | 0.65| + |0.03 2.14|+ |0.09 2.79/#10.10 | 10.28[+ 035 | | |
RS#28 13-May-96 |25 04.71| 80 25.36 0.41| + {0.02 0.57|+ [0.06 0.98/+/0.06 12,124+ 10.27 | 1.92] [0.04
RS#29 13-May-96 | 25 03.66| 80 21.41 0.24| + |0.01 0.51|+ |0.05 0.75(+/0.05 | 15.84|+ [0.99 | 1.19 [0.24
RS#30 13-May-96 |25 01.99| 80 20.95 0.23| + |0.01 0.21|+ [0.04 0.44;+/0.04 _517+ 1015 | 1| o
RS#31 13-May-96 |25 09.03| 80 17.65 0.19| + |0.01 0.77(+ |0.05 0.96/+|0.05 | 7.55|+10.41 | | |
RS#32 13-May-96 |25 13.29| 80 19.37 0.55| + |0.02 1.80)+ [0.08 2.35£10.08 | 7.25+ 1020 | | |
RS#33 13-May-96 |25 11.49| 80 20.51 0.40| + |0.02 1.96{+ |0.08 2.35/£/0.08 | 16.04|+ |0.02 | 1.67] [0.09
RS#34 13-May-96 |25 09.60| 80 21.03 0.36| + |0.02 0.83/+ (0.06 1.19]+/0.06 ..9.50|+ [0.30 | 1.08] [0.07
RS#35 13-May-96 |25 06.18| 80 23.94 0.53| + {0.02 0.70|+ |0.06 1.23/#/0.06 | 10.58{+ |0.18 | 2.98| [0.51
RS#36 14-May-96 | 25 04.17| 80 27.65 0.70| + |0.02 497+ 10.14 | 5.67|+|0.15 | 2042+ (021 | | |
RS#37 14-May-96 |25 14.52| 80 18.36 0.34| + |0.02 2.20(+ [0.08 2.54/1/0.08 14.53(+ 061 | [ |
RS#38 14-May-96 |25 16.09| 80 17.39 0.61| + |0.02 1.58/+ |0.08 2.19/+10.08 | 15.47/+ 014 | | |
RS#39 14-May-96 |25 14.94| 80 14.90 0.40| + j0.01 0.69|+ |0.05 1.09{£/0.05 | 15.37|+ |0.14 | | |
RS#40 14-May-96 |25 11.54| 80 17.65 0.28] + [0.01 0.68|+ 10.05 0.951+(0.05 17.49|+ |0.46 | 2.35| |
RS#41 14-May-96 | 25 04.18] 80 27.64 1.10| + |0.04 7.72ix [0.21 8.82|+|0.21 32.04|+ 2.06 o
RS#42 14-May-96 |25 03.43| 80 23.17 0.26| + |0.02 | 0.37|t [0.04 0.63|+/0.05 | 13.66/+ |0.28 | -
RS#43 14-May-96 | 25 04.80| 80 21.63 0.30| + |0.03 0.76/+ |0.05 1.06/+0.06 | 13.67)x 019 | | |
RS#44 7-Aug-96 |24 49.95| 80 47.78 0.68| + [0.04 0.53| + |0.08 1.20/+/0.09 12.67




Table 4: Continued.

AS#45 . | T-Aug-96 |24 48.93] 80 46.92 | 0.22] + [0.02 | 1.69/+10.08 |  1.91 4| ]

RS#46 | 7-Aug-96 |24 48.46| 80 48.01 | 0.34] £ 0.01 _0.93/+70.06 | 1.27)+

RS#47 — 7-Aug-96 |24 49.78| 80 49.05 | 0.16| + |0.02 | 1.58|+|0.08 | 1.74[+ e o

RS#48 7-Aug-96 |24 48.42| 80 49.59 | 0.47 £ 0.01 | 1.15[+]0.07 | 1.62/+| o
S | T-Aug-96 |24 48.12| 80 50.50 | 0.61) + [0.02 | 1.37/+|0.08 | 1.08]¢ 5| | .
AS#%0 [ 28-Jun97 | 25145 | -80.30 | 0.24|+|0.03 | 0.79/%0.05 1.04)+ +]1.76 | 3.28/%(0.99
RS#51 " '28.yun-97 | 2519 8029 | 049 + 0.04 | 0.39+]0.06 | 088/x|c | +/0.31 391|045
RS#52 " '28-Jun-97 | 25.11 | -80.38 ~ 051)+]0.04 | 0.41/+(0.06 | 092[|o +10.63 | 5.19/+|1.06
RS#53 28-Jun-97 | 2513 | -80.39 | 1.06/+[0.05 | 4.37|+l012 | 5.43[s)0 £[0.14  |26.52|%|5.89
RS #54 | 28dun97] 2506 | -80.45 | 046+ 003 | 0.69/+|0.04 | 1.i5cl0 tlose | | |

RS #55 28-Jun-97 | 25.00 | -80.50 | 049|+]0.03 | 1.02(+0.05 | 1.52[+/0.06 | 11.61|%l0.20 | 586 |
RS #56 A 26-Jun-97 | 24.96 | -80.53 | 046/ +[0.04 | 1.10/%[0.05 | 156/x0.07 | 13.52|t|o.6a | 323%[089
RS #57 28-Jun-97 - _ 030/ £10.03 | 0.24[+/0.04 | 053[tfo.05 | 3.87(+|1.02 | 2.67/+0.12
RS #58 2-Jul-97 | 25.14 | -80.26 | 0.39] + |0.04 | 0.00/%|0.06 | 039[+j0.07 | 3.71|+l0.10 | 1.06/%]0.03
RS #59 ‘ 2-Jul-97 | 25.14 | -80.26 | 029 +/0.02 | 0.03[+]0.04 | 032|tjo.04 | 271%[o.19 | 191/£]0.10
RS #60 2-Jul-97 | 25.12 | -80.30 | 0.9+ [0.02 | 0.44/%/0.04 | 063 £/0.05 |  6.06/£[0.18 | 2.65/+|0.51
RS #61 2-Ju-97 | 25.12 | -80.30 028+ 10.02 | 0.52/+]0.05 | 080/+[0.05 | 5.76/+/0.78 | 197]£|0.60
RS #62 2-Jul-97 | 25.11 | -80.31 034 + [0.01 | 0.50/+[0.04 | 084t|0.04 | s.80+l0.28 | 2292012
RS #63 2-Jul-97 | 2511 | -80.31 | 0.27]+ [0.01 0.72/+(0.04 |  099|+{0.05 | 8.15/%|0.59 | 2.54]+|0.06
RS #64 2-Jul-97 | 25.11 | -80.34 0.34| + |0.03 0.59] +|0.06 093/+[0.06 | 15.17|%]0.26 | 2.69/+[020
RS #65 2-Jul-97 | 25.07 | -80.39 0.33) £ |0.01 0.89/£/0.05 | 1.22|+/0.05 | 18.20| +[0.47 | 2.62] +[0.61
RS #66 2-Ju-97 | 25.03 | -80.40 030 + 10.05 | 0.64/+(0.07 | 094[t[0.09 | 9.98[[1.70 | 225|023
RS #67 2-Jul-97 | 25.07 | -80.46 0.76] + [0.02 5.39|£10.15 |  6.15/+[0.15 | 18.99/ +[0.80 | 351|+|0.19
RS #68 3-Jul-97 | 25.15 | -80.29 029) %1002 | 0.70/+]0.05 | 099[tjoo6 | [ | | ||
RS #69 3-Jul-97 | 25.15 | -80.29 0.23| + [0.02 1.34/£/0.06 | 1.58+/0.07 | 15.95/ +/0.39 | 228|051
RS #70 3-Jul-97 | 25.15 | -80.29 0.28] + [0.03 0.83+10.06 | 1.11/+/0.07 | 17.08]0.33 | 268[%|0.34
RS #71 3-Jul-97 | 25.15 | -80.30 030 +10.02 | 0.90/+[0.05 | 1.20[+/0.06 | 17.89|+|0.24 | 248|023
RS #72 3-Jul-97 | 25.04 | -80.35 0.22| +10.02 | 0.38/£0.05 | 0.59|+[0.05 | 6.98/*|o.15 | 1.53[%|0.11
RS #73 3-Jul-97 | 25.04 | -80.35 0.18/ + 10.01 | 0.40/%/0.04 | 0.57[t|0.04 | 6.26/%]0.09 | 1.90|+[0.22
RS #74 3-Jul-97 | 25.04 | -80.35 0.29) +10.02 | 0.22/+[0.04 | 051)t0.04 | 9.74|+l6.11 | 1.90/%[0.30
RS #75 3-Jul-97 | 25.01 | -80.37 048) +10.04 | 0.18/+[0.06 | 066/t[0.07 | 4.21|%|0.35 | 202[t]os2
RS #76 3-Jul-97 | 25.01 | -80.37 0.23| + [0.02 0.08/+10.04 | 031[+/0.04 | 3.81%[0.11 230[+[073
RS #77 4-Jul-97 | 25.20 | -80.34 0.82] + [0.02 213/+0.11 | 294/+/0.11 | 8.71|%(0.08 | 344|038
RS #78 4-Jul-97 | 25.18 | -80.35 0.52] + [0.02 3.40/%0.12 |  391/t/0.12 | 19.36/+/0.11 | 3.06|%|046
RS #79 4-Jul-97 | 2516 | -80.35 0.47| + 10.03 | 1.57[+[0.20 2.04/t0.20 | 9.8/ +/0.22 | 255/+]0.12
RS #80 4-Jul-97 | 25.15 | -80.37 0.71] + |0.03 2.20/£10.12 | 291|+/0.12 |  7.25/+]0.12 | 2.69|+[0.26
RS #81 4-u-97 | 25.12 | -80.38 0.79| £ [0.03 1.16/+10.10 | 195(+/0.10 | 13.06/ +|0.41 | 2.75[%[0.85
RS #82 4-Jul-97 | 25.09 | -80.43 0.89) + 10.03 | 3.26/%|0.15 4.15/410.16 | 21.40/£1.26 | 5.07/%0.14
RS #83 4-ul-97 | 25.07 | -80.44 0.78) + 0.03 | 2.84/+[0.13 | 3.63/+/0.14 | 14.43/+[0.30 | 288/+[057
RS #84 4-Jul-97 | 25.07 | -80.46 116/ + [0.04 | 10.48/+0.28 | 11.64|+0.28 | 31.14/2 0.47 | 442/%/1.40
RS #84-2 4-Jul-97 | 25.07 | -80.46 049+ [0.05 | 8.04/+/0.69 | 853[+|0.69 ]




Table 4: Continued.

RS #85 o 4Julo7 | 25.06 | -80.47 | 1.71]+]0.05 [ 16.34]+[0.40 | 1805[t[0.41 | 4353 £]0.17 | 1030 £[0.11
RS #85-2 . AJUkS7 | 2506 | -80.47 | 192/ +10.06 | 17.64+[0.44 | 19.56|tlo.aa | | |
B | 1 [average:| o.48/:0.31 | 1.6a/:]2.98] 2.12/x] 3.8 11.93]%]7.00 | 3.553 4.03




Table 5. Tracer concentrations by region, and significance (difference) relative to Keys Bay-side. Keys Bay-
side was defined as sites located on the Florida Bay side of the upper Keys (Key Largo, Plantation Key and the
Matecumbe Keys). North Coast Sties were along the Everglades Coast in muddy bottomed areas. Mid NE sites
were in the Northeastern areas of the bay and typically had very little sediments overlying a rock bay floor. Mid
Bay sites were typically basins within the mud-banked areas of the middle bay.

Florida Bay Region
Natural Tracers Keys Bay-side Mid Bay N. Coast Mid N.E.
(o, ) (o, n, p) (o, n, p) (o, n, p)

222Rp (dpm-L-1)
226Ra (dpm-L-1)
CH4 (nM)
CH;,CH3 (nM)

15N (%o0)

4.38 (3.24,73)
1.44 (0.59, 73)

38.2(23.3,73)
3.80 (5.40, 60)
7.89 (2.54, 23)

2.23 (1.43, 40, 0.00)
1.42 (0.41, 40, 0.86)

16.4 (8.8, 40, 0.00)
1.28 (1.50, 39, 0.00)
3.92 (1.98, 26, 0.00)

2.89 (2.15, 33, 0.02)
1.49 (0.48, 33, 0.63)

22.0 (19.3, 30, 0.00)
1.87 (1.13, 26, 0.08)
5.83(2.26, 13, 0.02)

2.40 (1.96, 32, 0.00)
1.95 (0.61, 32, 0.00)

13.2 (10.8, 30, 0.00)
1.80 (1.57, 25, 0.07)
3.57 (2.46, 7, 0.04)




Table 6: Average tracer concentrations from samples collected in various surface waters.

Site Rn-222 Methane Ethylene
(dpm/L) (nM) (nM)
—_—
Canals/Trenches 1911 830+ 1140 2915
(n=10) (n=10) (n=10)
Garden Cove Spring, Key Largo 66+ 19 141+ 176
(n=4) (n=4)
Garden Cove Surface, Key Largo 43%1.2 41+11
(n=4) (n=2)
Lois Key Spring, Sugarloaf Key 122+2 493 £41
(n=2) (n=3)
Porjoe Key Interstitial Fluid 67+1 176 £ 11
(seepage meter) (n=1) (n=3)
Porjoe Key Surface 0.2%+0.1 7.0x£0.2
m=1) (n=3)
Bay Average 48127 27+26 25+£3.7
(n=178) (n=173) (n=150)
Reef Average 15+14 116 481+64
(n=57) (n=57) (n=14)




Table 7: Nutrient concentrations of of springs, goundwater, and surface waters.

Site “Flow Rate NH4+ NO3- PO42- Salinity
(m3/min) | (uM) I (uM) | (uM) | (ppt)

KML Well (15' and 60')1 13.3+£0.04 0.62+048 0.98+0.18
(n=2)
Canals/Trenches (n = 3) 62147 0.90+0.33 0.07+0.03
Garden Cove Spring, Key 7.10 +0.872 0.53+0.15 0.40+0.16 0.08 +0.04 31
Largo (n=3)
Garden Cove Surface, Key BD3 1.24 +£0.09 BD 29
Largo (n = 3)
Lois Key Spring, Sugarloaf 12.03 0.1 0.94 38
Key
Porjoe Key Interstitial Fluid (7.3540.96) X 10-5 15.17 0.68 0.03 249
(seepage meter)4
Porjoe Key Surface BD 1.14 BD 28.5
Bay Average (n =27) 1.2+15 1.1£096 BD
Reef Average (n = 49) BD 0.30 £ 0.38 BD

TKML refers to Key Marine Laborato
injection well.

ZFlow rate measured by a General Oceanics flow meter with low flow propeller.
3BD = Below Detection.

4Sample taken directly from seepage meter port. Seepage meter covers an area of 0.25 m2,

ry located on Long Key, wells were within 10 meters of Class V sewage




I Table 8a. Results from septic tank experiments at site A on Big Pine Key.
(*) indicates dates of injections.
l B.D. = below detection
‘ sampling time after injection tap water
I date (days) SF6conc @M)  SD(pM)
12/13/96 * 0.01 9.62 0.07
12/14/96 1 0.33
l 12/15/96 2 0.31 0.01
12/16/96 3 0.69 0.03
12/17/96 4 0.93 0.00
I 12/18/96 5 0.58 0.01
12/19/96 6 0.09
12/20/96 7 0.81 0.02
l 12/22/96 9 0.34 0.01
12/24/96 11 0.11
12/26/96 13 0.34 0.00
l 12/30/96 17 0.55
1/1/97 19 0.14
1/3/97 21 0.64 0.11
1/5/97 23 1.15
I 1/9/97 27 0.56
1/11/97 29 0.39 0.00
1/13/97 31 0.18
I 1/15/97 33 0.27
1/17/97 35 0.60
1/19/97 37 0.53
I 1/21/97 39 0.13
1/23/97 41 0.32
1/25/97 43 0.32 0.02
I 1/29/97 47 0.44
2/2/97 51 0.39
2/6/97 55 0.53
I 2/10/97 59 0.41
2/14/97 63 0.32 0.01
6/12/97 * 181.48 0.33 0.03
I 6/12/97 181.50 0.37 0.03
6/12/97 181.71 B.D.
6/12/97 181.96 0.10 0.00
6/13/97 182.33 0.04 0.06
l 6/14/97 183.33 0.04 0.00
6/15/97 184.33 0.12 0.02
6/16/97 185.83 0.06 0.08
I 6/17/97 186.33 0.14 0.01
6/18/97 187.33 0.16 0.01
6/18/97 187.33 0.13 0.00
I 6/19/97 188.33 0.10 0.01
6/20/97 189.33 0.11 0.01




Table 8b. Results from septic tank experiments at site B on Big Pine Key.
(*) indicates date of injection.
B.D. = below detection

sampling  time after injection  tap water

date (days) SF6 conc (pM) SD (pM)
6/12/97 -0.01 0.38 0.07
6/12/97 -0.01 0.52 0.08
6/12/97 * 0.01 10002.07 140.19
6/12/97 0.01 27559.14 114.93
6/12/97 0.18 3537.98 70.72
6/12/97 0.44 410.40 18.74
6/13/97 0.85 4053.65 45.00
6/14/97 1.80 1099.73 1.78
6/14/97 2.43 880.79 16.05
6/15/97 2.76 692.27
6/17/97 4.80 252.09 3.40
6/18/97 5.84 153.50 0.42
6/19/97 6.84 127.55 1.59
6/20/97 7.83 g2.21 0.35
6/21/97 8.78 75.22 1.34
6/22/97 9.89 58.47 0.08
6/22/97 10.43 414.86 103.27
6/23/97 10.82 479.07 1.16
6/24/97 11.82 38.64 0.32
6/26/97 13.86 29.31 0.46
6/30/97 17.91 4.07 0.04
7/2/197 19.84 2.82 0.00
7/2/97 19.94 2.08 0.02
7/4/97 22.36 1.77 0.09
7/6/97 24.41 1.16 0.04
7/8/97 26.45 0.84 0.02
7/17/97 34.84 0.14 0.20
7/30/97 47 .47 B.D. 0.00
8/12/97 60.47 B.D. 0.00
8/21/97 69.47 B.D. 0.00




' Table 9. Results from July '96 simulated septic tank experiment on Key Largo.
time after SF6 well water
l Location injection (hrs)  conc nmoles level (m)
Monitor Well 0.00 B.D. 0.00
I 0.17 B.D.
0.52 B.D. -0.07
0.83 B.D.
l 1.17 B.D. -0.11
2.05 B.D. -0.19
5.07 0.22 -0.03
l 6.42 0.06 0.04
7.83 0.19 0.21
8.93 0.00 0.21
I 9.92 0.85 0.16
10.92 2.27 0.13
l 16.67 0.34 0.01
42.67 0.78
I Boat Basin 0.37 B.D.
1.05 B.D.
2.30 B.D.
l 5.33 B.D.
6.75 0.04
7.93 0.09
' 9.08 B.D.
10.08 B.D.
16.92 B.D.
42.67 B.D.

TR 4 N E B BE =
.




Table 10. Results from August '96 simulated septic tank experiment on Key Largo. I
time SFé St. Dev. time after well water time after SF6 St. Dev.
Locai inection ( M oM injection ( 1 Locat iniection ( M aM
Monitor Well 0.00 1.94 0.12 -0.02 1.02 Boat Basin 3.33 B.D.
2.17 1.57 1.42 0.98 4.50 B.D.
3.58 2.76 0.77 242 0.92 5.67 B.D.
4.75 2.39 0.01 3.75 0.88 7.17 B.D.
5.92 2.61 0.19 4.92 0.83 8.08 B.D.
6.75 2.89 0.03 6.02 0.83 9.00 B.D.
7.00 2.58 0.24 6.62 0.83 9.92 0.04
7.17 2.33 0.29 6.92 0.85 9.92 0.22
7.50 257 7.08 0.86 10.75 B.D.
7.92 2.01 0.08 7.70 0.90 11.75 B.D.
8.33 2.49 0.22 8.05 0.91 12.83 B.D.
8.75 2.63 0.09 8.95 0.97 13.88 B.D.
10.17 222 0.09 10.35 1.04 14.87 B.D.
10.92 2.49 0.18 11.75 1.05 15.83 B.D.
11.93 245 0.18 12.15 1.09 16.97 B.D.
13.05 238 0.05 13.20 1.06 18.70 B.D.
14.07 230 0.23 14.22 1.00 19.67 B.D.
15.03 243 0.03 15.18 0.95 20.75 B.D.
15.98 242 0.00 16.12 0.88 21.40 B.D.
17.15 2.39 0.01 17.28 0.81 21.88 B.D.
18.57 2.64 0.06 18.32 0.80 22.13 B.D.
19.00 2.39 0.39 18.93 0.78 22.50 B.D.
19.67 2.33 0.06 19.95 0.83 22.92 B.D.
20.50 2.18 0.15 20.35 0.85 23.33 B.D.
21.67 2.29 0.25 20.73 0.86 23.72 B.D.
22.75 221 0.03 21.85 0.93 24.20 B.D.
23.52 1.99 0.23 22.08 0.95 24,58 B.D.
24.03 2.30 0.14 22.50 0.98 24.95 B.D.
24.77 2.36 0.04 22.88 1.00 25.43 B.D.
25.25 2.39 0.0t 23.10 1.02 26.13 B.D.
26.12 2.59 0.19 23.70 1.03 26.67 B.D.
26.87 243 0.00 2397 1.04 27.70 B.D.
27.73 735 0.45 24.72 1.06 28.60 B.D.
28.33 14.50 0.60 2538 1.04 29.92 0.07 0.03
28.68 24.59 1.67 26.32 0.99 30.92 0.04
29.20 2244 6.26 26.98 0.97 32.00 B.D.
29.70 5.49 1.26 27.87 0.91 33.00 0.03 0.00
30.20 2.62 0.27 28.53 0.88 34.42 0.03
30.70 243 0.05 28.85 0.87 35.08 0.04 0.02
31.20 242 0.02 29.32 0.85 35.52 0.01 I
31.75 2.74 0.07 29.83 0.85 36.02 B.D.
32.20 2.62 0.24 30.33 0.84 36.83 B.D.
32.75 2.85 0.02 30.83 0.84 37.37 B.D.
33.20 2.89 0.12 3135 0.84 37.83 B.D.
34.13 2.83 31.93 0.87 38.33 B.D.
34.87 3.00 0.09 3245 0.89 39.33 B.D.
35.33 3.15 0.97 3293 0.92 40.18 B.D.
35.75 273 0.41 3333 0.94 41.12 B.D.
368.25 3.04 0.02 34.37 1.00 43.20 B.D.
37.22 5.46 0.86 35.05 1.04 44.25 B.D.
37.67 6.52 0.88 3548 1.08 45.17 B.D.
39.20 40.23 4.12 35.70 1.07 46.33 B.D.
40.03 61.96 0.95 35.88 1.09 48.00 B.D.
41.00 72.17 0.62 36.20 1.09 63.13 B.D.
43.00 3835 0.95 36.62 1.11
4412 13.80 0.84 36.80 1.10
46.00 6.23 1.17 37.17 1.10
47.87 4.05 0.02 37.55 1.09
63.35 70.43 0.26 37.82 1.08
38.30 1.05
39.i5 1.00
39.50 0.98
40.00 0.94
41.00 0.88
43.17 0.77
44.10 0.79
45.00 0.84
46.08 0.90
47.83 1.00
63.33 1.05




' Table Monitor Well results for August '97 simulated septic tank experiment, Key
11a. Llargo.

t (he)  aveconc pM) S t (hus)  Atlantic tide (em)  t_(hrs) MW tide (cm) time Bay tide (cm)
0.25 33.46 -1.5 58 -0.5 27.28 6 11.5
0.77 32.42 0.36 -0.5 73 0.05 133.96 7 9.5
1.28 49.82 0.5 82 0.25 32.36 8.98 7

0.00 1.5 79 0.7 33.63 9.85 8.5
1.88 43.69 3.91 2.5 67 0.9 33.63 10.885 6
2.25 0.00 3.5 49 1.12 36.805 11.85 5.5
2.75 40.80 4.5 30 1.3 35.662 12.95 4.5
3.30 28.01 5.5 15 1.43 39.98 13.95 2
3.75 34.21 8.62 6.5 6 1.85 42.52 14.98 3.5
4.25 20.67 7.5 6 2.23 41.885 15.95 7
4.75 13.31 0.30 8.5 15 2.5 41.7326 17 7
5.15 13.38 9.5 34 2.75 39.345 17.97 8.5
5.83 8.75 10.5 52 3.25 38.71 19 8
6.30 8.22 11.5 67 3.73 34.9 19.93 9
8.78 9.61 12.5 76 4.25 33.63 20.95 7
7.25 11.72 0.16 13.5 76 4.75 30.455 21.98 6
7.75 13.10 14.5 70 5.12 26.645 24.03 6.75
8.25 12.71 0.16 15.5 52 5.8 23.47 24.97 [
8.75 31.17 16.5 34 8.27 19.66 26 4.5
8.25 44.56 17.5 15 6.72 15.85 26.95 4.3
9.78 36.24 18.5 3 7.23 13.31 28.07 4.5
10.28 43.50 0.80 19.5 0 7.75 9.5 28.98 5
10.78 47.69 20.5 6 8.25 8.23 29.88 10
11.28 45.48 21.5 18 8.75 6.96 30.93 1.3

11.80 136.59 22.5 37 9.25 8.885 32.02 5
12.30 294.24 1.32 23.5 55 9.77 13.31 32.85 3.5
13.07 1067.97 245 70 10.27 13.845 34.05 1
13.40 1334.83 25.5 76 10.77 19.025 34 .95 [}
14,07 1554.83 26.5 76 11.27 22.835 35.7 o]
14.52 974.17 11.51 27.5 67 11.78 29.185
15,10 302.93 28.5 52 12.27 34.265
15.57 83.83 29.5 34 13.07 39.345
16.07 85.22 30.5 18 13.4 39.98
16.53 80.05 1.70 31.5 12 14.056 44.425
17.10 44.18 32.5 12 14.48 42.52
17.55 22.39 33.5 21 15.08 40.615
18.15 11.17 345 34 15.55 38.075
18.53 12.14 35.5 49 16.05 36.17
19.03 11.56 36.5 84 16.5 35.535
19.53 12.14 17.08 32.36
20.00 11.48 17.53 26.01
20.53 15.83 18.08 22.835
21.02 16.18 18.5 21.438
21.53 19.07 19 17.12
22.02 48.67 1.23 19.5 13.31

19.97 11.405

23.28 214.71 20.5 6.96
23.57 459.04 21 6.96
24.17 752.45 21.5 6.96
24.60 1403.01 47.47 21.98 9.5
25,08 2387.48 23.25 17.12
25.55 3103.68 23.55 19.66
26.08 3624.55 24.13 22.835
26.52 4627.82 24.58 28.55
27.08 4039.77 65.90 25.07 31.09
27.52 2526.60 25.53 32.995
28.10 510.51 26.07 36.17
28.58 754.17 26.5 a38.71
29.07 246.96 27.07 39.345
29.62 164.54 27.5 38.71
30.02 126.44 28.08 37.44
30.55 52.68 0.24 28.53 35.536
31.12 38.75 29.05 32.995
31.53 26.65 29.5 31.725
32.00 18.96 30 27.28
32.55 22.34 30.53 24.74
33.02 34.63 3t 20.93
33.50 51.39 31.5 18.39
34.02 88.47 0.56 32 15.215
34.53 222.40 32.55 12.04
34.98 671.24 33 10.77
35.53 1084.23 0.75 33.48 8.865




Table Results from Bay stations for August '97 simulated septic tank experiment. '
11b.
Bay 1 SF6 Bay 2 SF6 Bay 3 SF6 Bay 4 SF6 Bay 5 SF6 l
conc. (PM) SD  conc. (pM) SD sanQ._(nM.l SD  conc.(pM) SD conc. (M) SD
0.35 068 009 084 003 001 066 001 105 002
1.55 1.00 000 094 001 1.14 003 075 002 098 001 j
000  0.00 l
2.88 070 005 083 000 115 001 084 000 100  0.00
3.82 070 000 123 000 129 002 074 001 099 0.0l
4.83 064 001 101 002 167 001 071 003 044  0.62 i
5.90 063 001 092 000 149 009 072 002 079  0.02
6.85 057 001 083 004 153 000 076 000 064  0.03
7.82 047 001 063 002 164 004 083 012 067 007
8.80 040 001 069 002 146 002 046 004 078 028
9.82 058 004 085 000 148 000 055 002 056 001 )
10.80 047 001 051 001 122 002 047 002 038 003 l
11.80 036 000 053 000 098 003 043 000 036  0.02
12.82 060 001 055 002 049 001 045 002 040  0.02
13.82 055 007 044 001 070 006 050 001 048 004
14.82 164 006 112 004 059 000 048 003
15.80 157 004 101 001 08 001 036 004 083 0.0
16.82 089 001 039 002 154 004 063 001 095 002
17.83 085 004 017 001 115 011 095 001 112  0.00
18.78 089 002 0I5 003 099 000 1.02 001 093 004
19.77 098 008 040 004 091 003 093 003 100  0.05
20.80 084 004 027 001 069 003 077 00l 069 005
21.80 088 001 065 004 08 004 08 002 076 004
077 0.03
23.90 064 003 061 003 068 002 072 003 071 003
24.83 066 008 063 004 068 001 059 001 068 002
25.83 074 002 056 010 065 002 053 003 061 002
26.82 054 023 062 009 068 037 051 001 058 006
27.85 065 002 134 000 107 003 054 002 019  0.00
28.82 104 002 169 000 354 005 050 000 050 003
29.88 051 000 051 003 173 000 085 00l 061 002
30.82 077 002 053 009 077 003 062 003 057 002
31.90 048 001 064 006 184 008 061 003 065 00l
32.85 049 001 085 000 141 005 067 001 052 004
33.88 063 001 077 004 075 006 048 002 061 003
34.83 067 002 057 004 050 002 042 005 055 002
35.57 054 004 053 001 052 002 045 001 055 002




Table Estimates of groundwater transport rates for septic tank experiments on
12a. Big Pine Key and simulated septic tank experiments on Key Largo.

Horizontal Transport

Experiment / Date Date Rate (m/hr)
Septic Al Dec-96 -—--
Septic A2 Jun-97 -
Septic B Jun-97 1.37 & 0.11
simulated septic (RS-1) Jun-96

Bay 3.28

Monitor Well 0.27
simulated septic (RS-2) Aug-96

Bay 1.59 - 2.30

Monitor Well 0.3
simulated septic (RS-3) Aug-97

Bay -

Monitor Well 0.21




Table 12bEstimated groundwater transport rates from injection well experiments .
on Long Key. Horizontal and verticle transport rates (HTR and VTR's)
are shown. l
October '96 February I
'97
sampling depth HTR VIR HTR VTR
location  (m) (m/hr) (m/hr) (m/hr) (m/hr) '
Well 1 4.6 < 0.003 < 0.008 0.06 0.17
9.1 0.28 0.51 0.06 0.11
13.7 0.47 0.43 0.15 0.14 l
18.3 1.72 --- 0.46 -
Well 2 4.6 < 0.003 < 0.008 --- --- l
9.1 < 0.003 < 0.005 --- ---
13.7 0.01 0.01 0.03 0.02
18.3 0.01 --- - --- l
Well 3 4.6 < 0.003 < 0.008 --- ---
9.1 < 0.003 0.02 0.07 0.13
13.7 0.22 0.2 0.06 0.06 '
18.3 0.03 --- 0.14 ---
Well 4 4.6 < 0.003 < 0.008 --- -
9.1 < 0.003 <0005  [0.07 0.13 I
13.7 < 0.003 < 0.002 --- ---
18.3 < 0.003 --- --- -
Well 5 4.6 1.61 2.2 i
9.1 0.004 0.008 --- ---
13.7 < 0.003 < 0.005 - ---
18.3 < 0.003 < 0.002 - --- l
Well 6 4.6 < 0.01 < 0.008 --- ---
9.1 < 0.01 < 0.005 --- ---
13.7 < 0.01 < 0.002 --- --- '
18.3 < 0.01 --- --- ---
Well 7 4.6 < 0.01 < 0.008 - ---
9.1 < 0.01 < 0.005 --- - l
13.7 < 0.01 < 0.002 --- ---
18.3 < 0.01 --- --- -
Canal 0.74 --- - - l
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Figure 1: The Florida Keys are located off the southern tip of Florida. Florida
Bay separates the Keys from the mainland.
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Figure 2. Study sites A and B for septic tank experiments on Big Pine Key.
Figures are not drawn to scale.
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Figure 3. Study site at Ranger Station on Key Largo.
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Figure 5: Sampling site located at the Keys Marine Laboratory. The canal that
was used as an indicator of the Atlantic tide is located S.E. of Highway 1.
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Figure 7. Results from 1.04 ppm standards stored in Vacutainers for differing
time periods. Aged standards are compared with a newly prepared standard.




Flow Chart for I-131 Analysis

I-129
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8M HNO3

Water
+
KMnO4 .
103 acidified to pH 4 with
8M HNO3
AgNOs3
by Filter Sample [ 1
;E_' Water
= Agl ppt

Filter counted directly on
a Nal detector
el

Sample X

Figure 8: Schematic of iodine procedure used in field experiments used to concentrate I-
131 from one liter saline water samples.
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Figure 9: Contour of excess radon (dpm/L) in bottom water samples collected in December 1994.
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Figure 10: Contour of methane (nM) in bottom water samples collected in December 1994.
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Figure 11: Contour of ethylene (nM) in bottom water samples collected in December 1994.
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Figure 12: Contour of excess radon (dpm/L) in bottom water samples collected in October 1995.
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Figure 13: Contour of methane (nM) in bottom water samples collected in October 1995.
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Figure 14: Contour of ethylene (nM) in bottom water samples collected in October 1995.




25.50+
2540+ 8.00
; 7.00

25.30-
| 6.00

N
25.20~ \\ 5.00
\ B [ . /.00
T

2101 83.00
| 2.00

25.00-
1.00
24,90+ 0.00

Figure 15. Contour of excess radon (dpm/L) in bottom water samples collected in May 1996.
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Figure 16: Contour of methane (nM) in bottom water samples collected in May 1996.
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Figure 17: Contour of ethylene (nM) in bottom water samples collected in May 1996.
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Figure 18: Contour of excess radon (dpm/L) in bottom water samples collected in June 1997.
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Figure 19: Contour of methane (nM) in bottom water samples collected in June 1997.
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Figure 20: Contour of ethylene (nM) in bottom water samples collected in June 1997.
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Figure 21: Radon and methane concentrations in springs sampled

throughout the Keys. The groundwater tracer concentrations
are based on the overall average of all the data collected.
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Figure 22: Seepage rates (A) and chlorinity (B) measured at Porjoe Key.

Asterick (*) indicates a significant difference (p<0.01) between
meter and overlying water.
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Figure 23: Contour of 15N (0/00) in macroalgae collected in throughout the study period.




Figure 24: Well head shown relative to the Atlantic tide on the

reef-side (A) and the bay-side (B).
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relative to the Atlantic tide.




A. 60
Atlantic Tide

40 - 1z
o
xR
— Q)

£ 20- o

O =

- ~0.75 8

= ou

. =

() 0 - 8

o 5

o}

- O.SE\

20 <

-40 T 1 I T 0.25
7.5 10 12.5 15 17.5 20
B 60
Atlantic Tide

Height (cm)
(An) uonenUIdUO) CON

15 10 12.5 15 17.5 20

Time

Figure 27: Nitrate concentration on the reef-side (A) and the
bay-side (B) relative to the Atlantic tide.
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Figure 28: Phosphate (A) and ammonia (B) concentrations on
the bay-side relative to the Atlantic tide.
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Figure 29. SFg concentrations vs. time for (a.) site A, December 96; (b.) site

A, June 97; and (c.) site B, June 97. Note that the time scale for b. is continued
from a. Also note difference in concentration scale for site B.
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Figure 31. (a.) Tides and water levels for August '96 simulated septic tanks
experiment. (b.) SF¢ concentrations plotted against time for monitor well and

Florida Bay. Injection well water level shown for reference.
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Figure 34. (a) Average SFg concentration of Bay stations 1-5 vs time. Standard

deviationis shown by error bars. (b) Standard deviation values from (a) plotted
against time. Monitor well tidal level is also shown for both plots.
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Figure 52 . All samples collected and analyzed for radio-iodine and SF6

during February '97 experiment. Note the excellent correlation between the
two tracers.
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Figure 54. Schematic of finite model used to estimate the quantity of SF6 present at the sewage
disposal well site on Long Key. Diagram is not drawn to scale.
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Appendix 1
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time

0.09
0.12
0.22
0.28
0.38
0.44
0.55
0.63
0.74
0.93
1.40
1.84
2.02
2.76
3.10
3.80
4.77
5.83
6.70
7.81
10.03
17.07
19.95
46.31
70.77

time
(days)

0.05
0.12
0.21
0.27
0.37
0.44
0.54
0.62
0.73
0.92
1.33
1.78
2.19
2.82
3.15
3.85
4.82
5.92

1.867
0.605
0.007

0.022

st dev

Well 1, 4.6m Well 1,9.1m Well 1, 13.7m Well 1, 18.3m
(days) SF6conc. stdev SF6conc. stdev SF6conc. stdev SE6conc. stdev
(nM) (M) (aM) (M)
0.000 0.000 0.000 21.979

72.540
0.000 0.035 0.738 77.655

71.005
0.000 0.229 19.389 46.990

43,384
0.002 2.352 30.993 35.999

33.305
0.028 4.812 21.259 23.324
0.000 9.277 34.458 38.040
0.000 13.974 26.994 14.049
0.000 13.162 27.621 27.085
0.000 9.798 21.387 16.753
0.000 7.816 10.535 42.528
0.000 5.403 21.917 8.902
0.003 6.533 20.777 13.377
0.029 6.356 19.967 4.098
0.029 7.668 20.532 5.970
0.039 7.288 16.820 15.835
0.064 0.007 5.874 1.578 12.656 0.126 12.457
0.026 0.017 7.285 1.619 7.158 3.468 12.519
0.032 0.001 12.727 0.995 21.167 0.146 21.274
0.173 13.865 10.016 15.467
1.082 0.187 6.680 1.774 4,994 0.499 0.160
2.495 6.459 2.560 7.525

Well 2, 4.6m Well 2, 9.1m Well 2, 13.7m Well 2, 18.3m
SF6 conc. stdev F nc. stdev SF nc. stdev SF6 conc.

(nM) (M) (nM) (M)
0.000 0.000 0.000 0.000

0.000
0.012 0.003 0.023 0.000

0.000
0.000 0.000 0.000 0.000

0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.026
0.000 0.000 0.000 0.010
0.000 0.000 0.000 0.200
0.000 0.000 0.000 0.086
0.000 0.000 0.022 0.076
0.000 0.015 0.069 0.166
0.000 0.017 0.096 0.407
0.000 0.040 0.136 0.459
0.000 0.084 0.166 0.708
0.008 0.105 0.092 0.272
0.023 0.143 0.192 0.707

6.81




7.92 0.027 0.000 0.272 0.002 0.289 0.026 0.779 0.057

9.92 0.014 0.001 0.250 0.001 0.428 0.064 1.529 0.624 l
17.01 0.196 0.073 2.217 0.142 2.756 0.139 3.826 1.168 ‘
20.02 0.621 2.739 2.945 4.654

46.31 1.510 0.581 4.304 0.635 2.059 0.017 3.373 0.481

70.77 5.108 2.243 2.387

time Well 3, 4.6m Well 3,9.1m Well 3, 13.7m Well 3, 18.3m
(days) SF6conc. stdev SF6conc. stdev SF6conc. stdev SF6comc. stdev I

(M) (M) M) (M)

0.04 0.000 0.000 0.000 1.493

0.23 0.000 0.000 0.161 0.029 I
0.41 0.000 0.170 4.442 0.068

0.57 0.000 0.200 10.797 0.065 l
0.75 0.000 0.065 8.276 0.217

0.95 0.006 0.111 18.541 0.139 '
1.35 0.024 0.315 14.677 0.159

1.80 0.000 0.790 15.514 0.184

2.18 0.000 0.656 11.354 0.111 )
2.80 0.000 1.621 13.052 0.181

3.13 0.000 2.789 12.390 0.199

3.83 0.000 3.678 13.785 0.177

4.80 0.004 4.826 13.245 0.128 l
5.89 0.000 5.069 12.240 0.190

6.75 0.000 3.654 12.587 0.550

7.88 0.000 4.113 0.223 9.008 0.038 1.111 0.068

9.88 0.000 4.894 0.286 8.016 0.165 0.774 0.073 I
16.98 0.000 10.519 0.161 10.183 0.637 1.101 0.220

20.05 0.000 11.659 12.169 0.872

46.31 0.008 0.003 5.961 0.330 4.249 1.085 0.204 0.042

70.77 0.040 0.001 3.470 1.834 0.793

time Well 4, 4.6m Well 4, 9.1m Well 4, 13.7m Well 4, 18.3m
(days) SE6conc, stdev SF6conc. stdev SF6conc. stdev SF6conc. stdev l

(M) (nM) (nM) (nM)

0.08 0.000 0.000 0.000 0.000

0.25 0.000 0.000 0.000 0.008 I
0.41 0.014 0.000 0.000 0.000

0.59 0.000 0.000 0.018 0.005 l
0.78 0.000 0.000 0.017 0.060

0.97 0.000 0.000 0.056 0.000 l
1.38 0.000 0.000 0.082 0.000

1.82 0.000 0.000 0.101 0.000

2.16 0.000 0.000 0.058 0.000 I




2.78 0.000 0.005 0.080 0.073
I 3.12 0.000 0.013 0.096 0.000
3.82 0.000 0.025 0.101 0.000
4.78 0.000 0.055 0.117 0.009
5.87 0.000 0.071 0.072 0.015
l 6.73 0.000 0.131 0.086 0.000
7.84 0.000 0.170 0.012 0.134 0.012 0.011
9.84 0.000 0.623 0.005 0.458 0.046 0.000
l 17.05 0.000 5.902 0.070 2.141 0.138 0.007 0.000
< 19.98 0.000 1.687 0.255 0.427 0.116 0.016 0.009
46.31 0.026 0.020 5.314 1.044 0.357 0.444 0.034 0.013
l 69.06 0.069 6.788 1.813 0.213
time Well 5, 4.6m Well 5,9.1m Well §, 13.7m Well 5, 18.3m
(days) SEF6conc, stdev SF6conc. stdev SF6conc. stdev SF6conc. stdev
l (nM) (M) {nM) (nM)
0.10 0.007 0.000 0.000 0.000
0.26 0.798 0.000 0.000 0.000
I 0.42 0.137 0.000 0.000 0.000
l 0.60 0.097 0.000 0.000 0.000
0.79 0.114 0.000 0.000 0.000
0.99 0.057 0.000 : 0.000 0.000
1.42 0.088 0.000 0.000 0.000
l 1.85 0.000 0.000 0.010 0.056
2.12 0.000 0.000 0.000 0.000
2.74 0.000 0.000 0.000 0.000
I 3.08 0.000 0.000 0.000 0.000
3.79 0.000 0.000 0.000 0.000
4.75 0.000 0.010 0.000 0.000
5.81 0.000 0.025 0.000 0.000
l 6.68 0.000 0.024 0.000 0.000
7.79 0.000 0.034 0.004 0.000 0.007 0.002
9.80 0.000 0.048 0.003 0.000 0.037 0.000
17.11 0.024 0.001 1.924 0.114 0.000 0.141 0.004
19.94 0.019 0.005 1.159 0.416 0.007 0.002 0.055 0.007
46.31 0.022 0.004 10.887 2.484 0.069 0.037 0.000
70.77 0.088 10.297 0.208 0.334
I time Well 6, 4.6m Well 6,9.1m Well 6, 13.7m Well 6, 18.3m
(days) SF6conc. stdev SF6conc. stdev SF6conc. stdev SF6conc. stdev
I (M) (oM) (oM) (nM)
0.06 0.000 0.000 0.000 0.000
0.24 0.000 0.000 0.000 0.000
l 0.40 0.000 0.000 0.011 0.000
l 0.58 0.000 0.000 0.000 0.000




0.76 0.000 0.004 0.000 0.005 l
0.96 0.000 0.000 0.000 0.000

1.36 0.000 0.000 0.000 0.007

1.81 0.000 0.000 0.000 0.000 ‘
2.21 0.011 0.000 0.000 0.000 I
2.83 0.000 0.000 0.000 0.000

3.16 0.000 0.000 0.000 0.000

3.82 0.000 0.000 0.000 0.000 I
4.83 0.009 0.006 0.000 0.005 ]
5.94 0.000 0.000 0.000 0.000

6.78 0.000 0.000 0.000 0.000
7.95 0.000 0.000 0.000 0.000 '
9.95 0.000 0.000 0.000 0.000

17.03 0.000 0.039 0.006 0.000 0.000

20.00 0.000 0.039 0.006 0.000 0.000

46.31 1.931 0.220 0.000 0.000 0.063 0.004 I
69.06 5.095 3.296 0.006 0.191

time Well 7, 4.6m Well 7, 9.1m Well 7, 13.7m Well 7, 18.3m l
(davs) SF6conc. stdev SF6conc. stdev SF6conc. stdev SF6conc. stdev

(M) (M) (nM) (nM)

0.11 0.000 0.000 0.000 0.000 I
0.27 0.000 0.000 0.000 0.000

0.44 0.008 0.020 0.019 0.000 l
0.61 0.000 0.000 0.000 0.000

0.80 0.000 0.000 0.000 0.000 l
1.02 0.000 0.000 0.000 0.000

1.43 0.000 0.000 0.000 0.000

1.86 0.000 0.000 0.000 0.006

2.11 0.000 0.000 0.000 0.000 I
2.73 0.000 0.000 0.000 0.000

3.07 0.000 0.000 0.000 0.000 )
3.78 0.000 0.000 0.000 0.000 I
4.74 0.000 0.000 0.000 0.000

5.78 0.000 0.000 0.000 0.000

6.65 0.000 0.000 0.000 0.000

7.77 0.000 0.000 0.004 0.000 0.000 I
9.78 0.000 0.000 0.000 0.000

17.12 0.000 0.000 0.000 0.000

19.90 0.000 0.000 0.000 0.000

46.31 0.000 0.685 0.159 0.000 0.000 l
69.06 0.036 6.102 0.302 0.161 0.007

[




time FL Bay time Canal
(days) SE6conc, stdev (days) SE&_L%& stdev

(M)
0.12 11.558 5.05 1.304 0.061

0.28 17.009 6.15 1.402 0.200
0.44 12.737 6.85 1.254

0.61 12.588 10.13 0.802

0.80 11.140 17.64 0.680

0.99 6.242 20.08 0.711 0.030
1.42 5.762 46.31 0.000 0.000
1.84 5.971

2.21 5.448

2.84 3.474

3.16 3.058

3.86 2.557

4.33 1.748

5.94 1.151

6.83 1.302 0.068

7.96 1.044

9.95 0.643 0.068
17.63 0.000 0.000
20.07 0.762 0.006
46.31 0.000 0.000
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Appendix 2






time Well1,4.6m Well 1,9.1m Well1,13.7m Well 1, 18.3m

(days) SF6conc. stdev SF6conc. stdev SF6conc. stdev SF6conc. stdev
aoM) (M) (M) M)

-0.74  0.567 0.317 0.203 0.691

0.04 0.051 0.366 0.263  0.141 0.574

0.11 0.593 0.027  0.320 0.021 6.791 0.186

0.25 0.898 0.337 0.261 106.725 8.218

0.45 0.468 0.181 0.138 358.732 17.60

0.57 0.530 0.150 1.010 315.095 15.69

0.84 0.991 0.326 0.004 44.382 0.876 217.436 7.488

1.10 0.893 0.295 0.002 75.528 6.649 148.047 2.856

1.36 0.671 0.210 77.972 4.142 112.118 3.811

1.67 0.779 0.004 0.987 0.009 71.231 1.009 83.046 2.621
2.01 0.923 0.004 4.917 0.082 65.724 1.598 82.704 3.994
2.34 1.140 0.014 10.792 0.125 57.717 1.648 62.165 1.665
2.96 2.214 18.9565 45.967 1.544 34.332 3.415
3.34 2.683 0.055 22.444 0.345 33.292 1.385 24.908 2.398
4.00 2.578 0.001 21.033 0.542 24.927 0.523 15.410 0.346

4.34 2.001 21.623 22.080 30.594 0.472

4.96 1.730 0.131 21.367 0.041 20.448 24.554 0.655

5.34 1.639 18.999 0.606 20.751 0.292 22.668 0.885

5.97 1.557 0.025 17.823 21.187

6.32 1.407 18.694 20.204 0.154 21.374

8.00 1.474 18.253 19.490 19.001 0.516

8.92 1.134 0.044 13.429 13.720 12.552

time Well 2,4.6m Well 2,9.1m Well 2, 13.7m Well 2, 18.3m

(days) SF6conc. stdev SF6comc. stdev SF6conc. stdev SE6comc. stdev
mM) (aM) (M) M)

-0.74 0.615 0.384 0.088 0.249

0.09 0.782 0.334 0.062 0.409

0.23 0.989 0.453 0.100 0.499

0.39 0.669 0.260 0.051 0.002 0.275

0.55 0.692 0.098 0.045 0.300

0.81 0.993 0.457 0.097 0.668 0.017

1.07 0.973 0.395 0.090 0.001 0.539

1.31 0.658 0.268 0.058 0.040 0.004

1.64 0.818 0.347 0.086 0.003 0.766

1.99 0.964 0.413 0.107 0.004 1.238

2.31 1.353 0.521 0.169 0.003 1.830 0.054

2.95 1.435 0.603 0.007 0.328 3.195

3.32 1.173 0.113 0.498 0.486 0.003 2.971 0.053

3.98 1.092 0.440 0.853 1.693 0.005

4.31 1.068 0.007 0.447 1.134 1.456

4.94 1.045 0.429 1.545 0.040 1.321 0.003

5.32 0.979 0.393 1.546 0.009 1.041

5.95 0.750 0.240 0.002 1.254 0.747 0.006

6.29 1.396 0.562 0.017 3.066 1.521

7.98 1.464 0.002 0.636 15.868 0.009 1.615 0.010

8.89 1.159 0.427 0.001 2.047 1.279 0.030

time Well 3, 4.6m Well 3,9.1m Well 3, 13.7m Well 3, 18.3m

(days) SF6conc. stdev SF6conc. stdev SF6conc. stdev SF6conc. stdev
(oM) (aM) (oM) (aM)




-0.74 0.001 0.000 0.134 0.096 0.078
0.02 0.001 0.000 0.126 0.029 0.047
0.08 0.000 0.069 0.042 0.068 0.002
0.22 0.001 0.119 0.084 0.218
0.38 0.002 0.000 0.086 0.036 0.308
0.04 0.001 0.059 0.001 0.039 0.684
0.80 0.001 0.132 0.240 1.519
1.06 0.001 0.124 0.002 0.905 1.342
1.30 0.001 0.000 0.074 1.082 1.111 0.002
1.63 0.001 0.000 0.088 0.000 1.582 0.928
1.99 0.005 0.179 6.065 0.859
2.30 0.001 0.000 0.643 9.006 0.296 1.140 0.032
2.94 0.002 14.491 0.391 21.755 0.934
3.31 0.001 13.715 21.811 0.193 0.742
3.97 0.003 0.000 9.870 0.475 21.060 0.413 0.646
4.31 0.001 11.078 0.020 20.872 0.694 0.463
4.93 0.002 11.736 0.034 20.053 0.443 0.020
5.31 0.001 9.529 18.732 0.028 0.352 0.017
5.94 0.001 0.000 8.978 0.143 20.103 0.528 0.265
6.29 0.002 0.000 8.826 0.041 16.758 0.573 0.505 0.009

7.97 0.002 0.000 9.713 16.395 1.318 0.433
8.88 0.001 0.000 8.214 0.112 11.744 0.193 0.176 0.002

time Well4, 4.6m Well 4,9.1m Well 4, 13.7m Well 4, 18.3m

(days) SF6conc. stdev SF6conc. stdev SF6conc. stdev SF6conc. stdev
(oM) (oM) (oM) (oM)

-0.74 0.000 0.297 0.601 0.149

0.10 0.574 0.074 0.301 0.123

0.24 0.745 0.002 0.114 0.445 0.091

0.41 0.421 0.059 0.239 0.034 0.034

0.56 0.489 0.000 0.228 0.061

0.82 0.751 0.136 0.539 0.194 0.001

1.09 0.671 0.342 0.017 0.400 0.137

1.34 0.856 1.125 0.340 0.001 0.112

1.65 0.582 3.192 0.161 0.342 0.004 0.095

2.00 0.569 5.979 0.310 0.137

2.32 1.284 9.548 0.490 0.586 0.233 0.004

2.96 1.162 19.717 0.417 0.521 0.268

3.33 1.164 18.259 0.531 0.232 0.001

3.99 0.992 9.870 0.475 0.434 0.229

4.33 1.233 0.002 17.672 0.537 0.013 0.170

4.95 0.890 15.829 0.126 0.398 0.162 0.021

5.33 0.987 15.120 0.438 0.159 0.001

5.96 0.439 0.006 7.221 0.247 0.091

6.31 1.559 0.003 13.567 1.633 0.639 0.020 0.197

8.00 1.639 15.877 0.170 0.715 0.277 0.000

8.91 0.936 11.702 0.468 0.719 0.003 0.202

time Well 5, 4.6m Well 5,9.1m Well 5, 13.7m Well §, 18.3m

(days) SF6conc. stdev SF6conc. stdev SF6conc. stdev SF6 conc. st dev
(M) (M) M) (M)

-0.74 0.092 0.007 0.483 0.283 0.233

0.05 0.037 0.252 0.498 0.193

0.12 0.021 0.312 0.205 0.565

0.26 0.041 0.637 0.357 0.345

0.47 0.026 0.357 0.104 0.110




0.58 0.020 0.001 0.289 0.163 0.122
0.85 0.034 0.636 0.454 0.030 0.346
l 1.12 0.022 0.001 0.571 0.360 0.339
1.37 0.013 0.309 0.135 0.126
1.67 0.027 0.422 0.1562 0.278 0.026
2.02 0.019 0.438 0.313 0.064 0.205 0.005
2.35 0.043 0.438 0.738 0.007 0.449
2.97 0.037 0.001 0.791 0.489 0.515
3.35 0.034 0.652 0.402 0.004 0.437
4.01 0.043 0.001 0.613 0.400 0.414
4.35 0.038 0.686 0.412 0.013 0.412
4.97 0.027 0.671 0.425 0.019 0.414
5.35 0.038 0.588 0.366 0.001 0.361 0.008
l 5.98  0.021 0.001  0.321 0.178 0.179
6.32 0.057 0.845 0.012 0.514
8.01 0.042 0.903 0.412 0.582 0.007
8.93 0.031 0.001 0.420 0.403 0.371
l time Well 6,4.6m Well 6, 9.1m Well 6, 13.7m Well 6, 18.3m
(days) SF6comc. stdev SF6conc. stdev SF6comc. stdev SF6cone, stdev
@oM) oM) (M) (nM)
' -0.74 1.426 0.633 0.000 0.047
1.32 0.756 0.292 0.001 0.029
2.31 1.880 0.955 0.000 0.001 0.084
3.32 1.716 0.035 0.770 0.002 0.023
l 4,32 1.597 0.706 0.007 0.001 0.084
5.32 1.382 0.597 0.001 0.068 0.001
6.30 1.955 0.798 0.004 0.106 0.001
7.99 2.093 0.905 0.004 0.003 0.119
l 8.90 1.593 0.052 0.617 0.000 0.000 0.081
time Well7,4.6m Well 7,9.1m Well 7, 13.7m Well 7, 18.3m
(days) SF6conc. stdev SF6conc. stdev SF nc. stdev SF6conc. stdev
(M) (nM) (oM) (M)
-0.74 0.001 0.751 0.051 0.005 0.000
1.39 0.001 0.000 0.484 0.028 0.005 0.001
2.36 0.003 1.201 0.001 0.073 0.010
3.36 0.003 1.135 0.064 0.003 0.009
4.35 0.003 0.000 1.073 0.061 0.007
5.36 0.003 0.893 0.056 0.004 0.000
l 6.33 0.005 0.000 1.314 0.092 0.004 0.007
8.02 0.006 1.369 0.004 0.109 0.012
8.94 0.004 0.859 0.073 0.003 0.008
l time FL Bay time Canal
(days) SF6conc. stdev (days) SF6conc. stdev
(nM) (M)
0.13 0.000
l 0.28 0.000 0.292
0.48 0.287 0.074 0.292 0.152
0.59 0.000
0.86 0.153 0.076
l 1.13 0.082 0.108
1.40 0.164 0.0701.135 0.000
1.68 0.221 0.068
I 2.03 0.169 0.080




0.087
0.087
0.203
0.000
0.063
0.130
0.066

0.090
0.000
0.117
0.074

0.056
2.375
0.080
2.992
0.028
0.045 4.026
0.048 4.375
4.988
0.067 5.264
5.372
6.000
0.030 6.347
7.948
8.326
8.958

0.108

0.000

0.000
0.000
0.000
0.000
0.039
0.045
0.000
0.000

0.000
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