Everglades Restoration Update: Water Quality, Central Everglades and Tamiami Trail Next Steps Project

For the Florida Keys Water Quality Protection Program, February 20, 2013
Foundation and CERP Ongoing/Planned Projects

- **Existing Features** (grey) include Stormwater Treatment Areas with 45,000 effective acres.
- **Under Construction** (blue) includes projects nearing completion include STA expansions (approx. 11,000 acres), the Modified Water Deliveries and C-111 South Dade projects, and C-111 Spreader Canal West.
- **Near-Term Projects** (green) were authorized by WRDA 2007 and include Picayune Strand, Site 1 Impoundment, and Indian River Lagoon South, EAA A-1 Storage.
- **Interim-Term Projects** (yellow) are projects that are planned for authorization in the next WRDA bill (2014?), and include C-43 Storage, Loxahatchee River, Broward County WPAs, and Biscayne Bay Coastal Wetlands.
- What’s Missing – Projects in the Central Everglades.
Alterations in Water Flows through the Everglades

Re-evaluating Natural System Flows
- Paleo-ecological studies and close review of early surveys of the Everglades have revised our understanding of the pre-drainage Everglades.
- New hydrologic modeling of the Pre-Drainage Everglades (ENPMOD1, NSRSM).

Water Conservation Area Inflows
- For Pre-drainage models - overland flows from the northern Everglades southward.
- For Post-Drainage models - structure flows (S-5A, S-6, S-7, S-150, S-8, and S-140) plus future CERP overland flows.

Shark River Slough (Transect C)
- Estimates of overland flows from the Rocky Glades (east) across Shark River Slough to the Ochopee Rise (west).

From the SFWMD River of Grass Phase II Planning process (preliminary information).
Alterations in Water Flows through the Everglades

Everglades Protection Area Inflows

- Current: 1.4 M ac-ft
- Revised Pre-Drainage: 1.9 – 2.1 M ac-ft

Reduced Flows from Lake Okeechobee and Seasonal Timing Shift
Water Depth Comparisons in NESS

![Water Depth Comparisons in NESS](image)

- **Water Depth**: feet

Legend:
- Black: nsm51 2x2Topo
- Red: nsm462
- Blue: alt7r5e

Current (blue)
Ponding Depth Comparisons and Everglades Plant Communities
EAA Land Becomes Available (for Water Storage/Treatment)

In 2008, the South Florida Water Management District develops a proposal to acquire more than 180,000 acres of agricultural land for Everglades restoration from the United States Sugar Corporation.

Economic conditions revise the transaction to 26,800 acres with options to purchase the remaining acreage over ten years.

New Restoration Targets are Developed – Confirmation that the Pre-Drainage Everglades were Wetter and the Downstream Estuaries were Fresher than Previously Understood.
Everglades Construction Project (ECP) Began in 1994 with the goal of reducing TP concentrations and loads from the EAA to protect the downstream Everglades.

57,000 acres of Stormwater Treatment Areas (STAs) and agricultural BMPs have lowered TP to 19-59 ppb, with load reductions of 70-80% EAA-wide.

Florida’s Phosphorus Rule In 2002 the State set a Total Phosphorus Limit at 10 ppb to protect the Everglades from imbalances in native flora/fauna.

EPA Amended Determination In 2008 a federal judge ordered the EPA to conduct a review of the Everglades Forever Act amendments and Phosphorus Rule to determine if they comply with Clean Water Act. This review has driven STA expansion requirements and a new water management approach.
Total Phosphorus in SRS
Total Phosphorus (TP) measurements at the Shark Slough inflow structures routinely spike during lower flow periods when the WCA-3A marsh is drying, and inflows are largely contained within the upstream canal system.

TP measurements have been hovering right at the long-term TP limit for the last 3-4 years.

This raises serious concerns about increasing inflows into Northeast Shark River Slough, because the S-333 structure receives much of its inflows from the L-67A canal.
Planned Everglades Water Quality Restoration Strategies

2012-2016
- Eastern Flow-Path: 45,000 acre-foot Flow Equalization Basin
- Central Flow-Path: 54,000 acre-foot Flow Equalization Basin

2013-2018
- Eastern Flow-Path: 4,700 acres of Stormwater Treatment Area (STA)

2018-2024
- Eastern Flow-Path: 1,800 acres of STA (2018-2022)
- Western Flow-Path: 11,000 acre-foot Flow Equalization Basin (2018-2023)
- Western Flow-Path: 800 acres of earthwork within existing STAs to maximize effective treatment area (2019-2024)
Central Everglades Planning Process

What’s Next

- “Central Everglades” in context of “center” of the wishbone
- Goals
 - Reduce damaging discharges to east and west coast estuaries
 - Restore habitat in the central Everglades, focusing on the “River of Grass”
 - Deliver “new” sources of clean water to the Central Everglades and ENP
- Considerations
 - Land Available
 - Water Quality
 - Herbert Hoover Dike
 - Savings Clause
Central Everglades Planning Project

CERP Components Under Consideration

- Storage, treatment and conveyance in the EAA
- Decompartmentalization and sheetflow enhancement
- Seepage management
- Operational Changes

Feasible 1st INCREMENT
Central Everglades Planning Project
Hydrologic Modeling Tools

Decoupled Modeling Approach

RSMBN: EAA Storage & Treatment

Interface ("Red Line"): Flow Volumes

RSMGL: Decompartmentalization & Seepage Management
Central Everglades Planning Project
Primary Performance Metrics

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet flow in the Everglades Ridge and Slough Landscape</td>
<td>Measure of the timing and distribution of sheet flow across the landscape.</td>
</tr>
<tr>
<td>Number and Duration of Dry Events in Shark River Slough</td>
<td>Measure of the number of times and mean duration in weeks that water level drops below ground.</td>
</tr>
<tr>
<td>Inundation Pattern in Greater Everglades Wetlands</td>
<td>Measure of the number and duration of inundation events used to calculate the percent period of record of inundation.</td>
</tr>
<tr>
<td>Slough Vegetation Suitability</td>
<td>Measure to evaluate the hydrologic suitability for slough vegetation.</td>
</tr>
<tr>
<td>Hydrologic Surrogate for Soil Oxidation</td>
<td>Measure of cumulative drought intensity to reduce exposure of peat to oxidation.</td>
</tr>
<tr>
<td>Extreme High and Low Water Levels in Greater Everglades Wetlands</td>
<td>Measure of the number and duration of extreme high and low water depth events.</td>
</tr>
<tr>
<td>Prey-Based Freshwater Fish Density Performance Measure</td>
<td>Measure of small-sized fish density based on frequency of dry downs.</td>
</tr>
<tr>
<td>Northern Estuaries Oyster Habitat and Submerged Aquatic Vegetation</td>
<td>Measure of oyster and sea grass habitat based on frequency of flows from S-79 and S-80.</td>
</tr>
</tbody>
</table>
Central Everglades Planning Project
Hydrologic/Ecological Tradeoffs

1) Restoration of Ridge-Slough headwaters while preserving extant sawgrass plain in northern WCA-3A.

2) Reconnection of historic slough flow patterns while preserving extant tree islands in WCA-3B.

3) Restoration of SRS hydrology and FI Bay salinity while preserving extant CSSS habitats.
Central Everglades Planning Project
Regional Water Flow Analyses

SPATIAL PERSPECTIVE

REDLINE
- Flows from EAA into WCA 3A (L-4, L-5 and L-6 levees and canals)
 - EAA Storage and Treatment
 - Northern WCA 3A Hydropattern Restoration
 - L-28 Triangle Rehydration/connectivity

GREENLINE / BLULELINE
- Flows through WCA 3A and WCA 3B (L-67A and C levees and associated canals)
- Flows from WCA 3A/3B into Everglades National Park (Tamiami Trail roadway and L-29)
 - WCA 3A/3B and ENP Conveyance

YELLOWLINE
- Flows from WCA 3A/3B and ENP to the lower east coast (east coast protective levee system, the L-30 and L-31N)
 - Seepage Management Options

Everglades National Park
South Florida Natural Resources Center
Central Everglades Planning Project
Final Array of Alternatives
Everglades National Park
South Florida Natural Resources Center

Tentatively Selected Plan (ALT4R)

- **STORAGE AND TREATMENT**
 - Construct A-2 FEB and integrate with A-1 FEB operations
 - Lake Okeechobee operation refinements within LORS

- **DISTRIBUTION/CONVEYANCE**
 - Diversion of L-6 flows and L-5 canal improvements
 - Spreader canal ~3 miles west of S-8 (3,000 cfs)
 - Backfill Miami Canal from ~1.5 miles south of S-8 to I-75
 - L-28 Triangle - gap levee

- **DISTRIBUTION/CONVEYANCE**
 - Increase S-333 capacity to 2,500 cfs
 - Two 500 cfs gated structures in L-67A, spoil removal west of L-67A north and south of structures
 - Relocated L-67A levee to form Blue Shanty levee in WCA 3B
 - Degrade L-67C levee in Blue Shanty flowway
 - One 500 cfs gated structure north of Blue Shanty levee and 6,000-ft gap in L-67C levee
 - Degrade L-29 levee in Blue Shanty flowway, divide structure east of Blue Shanty levee at terminus of western bridge
 - Tamiami Trail western 2.6 mile bridge and L-29 canal max stage at 9.7 ft (FUTURE WORK BY OTHERS)
 - Degrade entire L-67 extension levee

- **SEEPAGE MANAGEMENT**
 - Increase S-356 to 1,000 cfs
 - Partial depth seepage barrier south of Tamiami Trail 5 miles along L-31N
 - G-211 operational refinements; meet Savings Clause requirements and use coastal canals to convey seepage eastward to Biscayne Bay

Legend:
- FEB
- STA
- Pump
- Spread Canal
- Backfill
- Levee Removal
- Gated Structure
- Seepage Barrier
- Divide
- Levee
Alt4R Features

- Flared S-333
- The Shanty
- Low-way
- L-30
- L-29
- S-335
- S-345F/G
- S-345D
- S-333
- WCA
- 3B
- L-29
- L-30
- L-33
- L-67A
- L-67C
- S-334
- G-211
- L-67 Ext
- Tamiami Trail
- S-335
- S-356
- Marsh/Canal Sites
Central Everglades Planning Project
Final Array Cost/Benefit Summary

<table>
<thead>
<tr>
<th></th>
<th>ALT1</th>
<th>ALT2-R</th>
<th>ALT3-R</th>
<th>ALT4-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Average Annual Cost</td>
<td>$74,400,000</td>
<td>$86,400,000</td>
<td>$90,000,000</td>
<td>$83,600,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habitat Unit Lift</th>
<th>ALT1</th>
<th>ALT2-R</th>
<th>ALT3-R</th>
<th>ALT4-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCA 3A</td>
<td>125,931</td>
<td>122,917</td>
<td>122,135</td>
<td>123,741</td>
</tr>
<tr>
<td>Cost Effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCA 3B</td>
<td>9,426</td>
<td>10,282</td>
<td>8,569</td>
<td>5,998</td>
</tr>
<tr>
<td>Cost Effective</td>
<td></td>
<td>Cost Effective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENP</td>
<td>91,844</td>
<td>90,593</td>
<td>100,253</td>
<td>112,283</td>
</tr>
<tr>
<td>Cost Effective</td>
<td></td>
<td></td>
<td></td>
<td>Cost Effective</td>
</tr>
<tr>
<td>Florida Bay</td>
<td>64,363</td>
<td>62,565</td>
<td>79,455</td>
<td>90,671</td>
</tr>
<tr>
<td>Cost Effective</td>
<td></td>
<td></td>
<td></td>
<td>Cost Effective</td>
</tr>
<tr>
<td>Caloosahatchee Estuary</td>
<td>4,968</td>
<td>4,968</td>
<td>4,968</td>
<td>4,968</td>
</tr>
<tr>
<td>Cost Effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Lucie Estuary</td>
<td>1,199</td>
<td>1,199</td>
<td>1,199</td>
<td>1,199</td>
</tr>
<tr>
<td>Cost Effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Habitat Units</td>
<td>297,731</td>
<td>292,524</td>
<td>316,579</td>
<td>338,860</td>
</tr>
<tr>
<td>Cost Effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost increase from Alt 1 to Alt 4: 12% (Previously 20%)

Benefit Increase from Alt 1 to Alt 4: 14%

--- Cost Per HU $250
--- Cost Per HU $247
Mean Optimal Habitat Area for Juvenile Spotted Seatrout
Florida Bay Salinity Performance Measure
Conclusions

- All CEPP alternatives yield improved salinity conditions in Florida Bay, relative to Future Without (FWO) project or Existing Condition Base (ECB)

- Mean salinity for all alternatives still higher than NSM conditions:
 - about 2 ppt to 9 ppt saltier than NSM in the dry season across different Florida Bay zones,
 - but, about 2 ppt closer to NSM than salinity under FWO or ECB.

- Expected benefits (“lift”) consistently greatest with Alt 4 (Alt 4 > Alt 3 > Alt 1 > Alt 2). However, the magnitude of differences among alternatives was modest.