Assessing Effects of mosquito control pesticides on coral and lobster larvae in the Florida Keys National Marine Sanctuary.

Richard Pierce, P.I.,
Mote Marine Laboratory, Ecotoxicology
Project manager, field monitoring, pesticide analysis

Kimberly Ritchie, Co-PI
Mote TRL, Marine Microbiology
Coral larvae toxicity studies

Thomas Matthews, Co-PI,
FL Fish & Wildlife Research Institute
Lobster larvae toxicity studies & Field Sampling
Project Goals

1. To determine if applications of mosquito control pesticides in the FL Keys result in toxic effects to NMS organisms.
 - Monitor FKMCD applications to determine the EEC in the NMS
 - Conduct Toxicity tests on select non-target organisms

2. Work with stakeholders to assess the risk and develop appropriate response strategies as needed to maintain mosquito control while reducing the risk to the NMS.

- **Permethrin**: Applied as Permanone 30-30 (30% Permethrin, 30% Piperonyl butoxide); PM Ground ULV
- **Malathion**: Applied as Fyfanon ULV Mosquito, 96.5% Malathion; PM ground ULV
- **Naled**: Applied as Dibrom Concentrate, 87.4% naled; AM Aerial ULV

Coral larvae: *Porites astreoides*,
Spiny Lobster *Puerulus* (pre-juvenile larval stage) *Panulirus argus*
Unique Public-Private Partnership

Including Stakeholders from Federal, State & Local Agencies and Mote, an Independent Non-profit Research Institution
Background
1998 Study at Key Largo Permethrin & Naled Applications:
Filter deposition and water samples

June 16-18, and July 28-29, 1998
Evening, ground ULV Permanone;
Morning, Aerial ULV Dibrom;

September 22-23, 1998
Evening, ground ULV Permanone
Morning, no Dibrom, Hurricane Georges Evacuation

Cis+trans Permethrin

<table>
<thead>
<tr>
<th>Concentrations (µg/m³)</th>
<th>July 1998</th>
<th>Sept. 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.2</td>
<td>B4, B7</td>
<td>A7C, B9</td>
</tr>
<tr>
<td>0.2 - 5</td>
<td>B8, B9</td>
<td>B9</td>
</tr>
<tr>
<td>5 - 10</td>
<td>B1, B3</td>
<td>B3, B6</td>
</tr>
<tr>
<td>10 - 15</td>
<td>B5</td>
<td>B5</td>
</tr>
<tr>
<td>> 15</td>
<td>B2</td>
<td>B2</td>
</tr>
</tbody>
</table>

Naled <0.2 µg/m³

Cis+trans Permethrin

<table>
<thead>
<tr>
<th>Concentrations (µg/m³)</th>
<th>July 1998</th>
<th>Sept. 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.2</td>
<td>A2, A6</td>
<td>A2, A6</td>
</tr>
<tr>
<td>0.2 - 5</td>
<td>A1, A4</td>
<td>A1, A4</td>
</tr>
<tr>
<td>5 - 10</td>
<td>A3, A5</td>
<td>A3, A5</td>
</tr>
<tr>
<td>10 - 15</td>
<td>A3, A5</td>
<td>A3, A5</td>
</tr>
<tr>
<td>> 15</td>
<td>A3, A5</td>
<td>A3, A5</td>
</tr>
</tbody>
</table>
Results of 1998 Field Applications

- **Drift into National Marine Sanctuary:**
 - **Filters:**
 - Permethrin: detected on filters = drift, driven by wind speed & direction
 - Naled & DDVP, none detected on filters

- **Water Surface Microlayer:**
 - Permethrin, none detected in NMS surface water (<0.01 ug/L)
 - canal surface microlayer: 5.1 to 9.4 ug/L
 - Naled, none detected (<0.01 ug/L)
 - DDVP in one sample, windward side (0.19ug/L)

- **Tidal Transport, Subsurface Water (~ 20cm depth):**
 - Permethrin: one site windward side Atlantic (0.07ug/L)
 - canals, none detected, 2 hrs post appl.
 - Naled: no naled detected (<0.01ug/L)
 - DDVP: June; 5 of 9 windward sites, .08 to .56ug/L
Acute Toxicity (96 hr LC-50) of Permethrin, Dibrom, DDVP and Malathion to *Mysidopsis bahia*, and *Penaeus duoarum*. Persistence (1/2 life) and solubility in seawater.

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>M. Bahia 96 hr LC-50 ug/L (ppb)</th>
<th>P. duoarum 96 hr LC-50 ug/L (ppb)</th>
<th>Half Life</th>
<th>Solubility mg/L (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permethrin</td>
<td>.02-0.1</td>
<td>0.2</td>
<td>1-3</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td>(Note: tech.~1/3 cis, 2/3 trans; toxicity cis>>>trans) + PBO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naled</td>
<td>4.7-8.8</td>
<td>1.8</td>
<td>< 1</td>
<td>2,000</td>
</tr>
<tr>
<td>DDVP</td>
<td>19</td>
<td>NA</td>
<td>< 1</td>
<td>NA</td>
</tr>
<tr>
<td>Malathion</td>
<td>2.2</td>
<td>280</td>
<td>2-4</td>
<td>130</td>
</tr>
</tbody>
</table>

References: Schimmel et al., 1983; Cripe, 1994; Mason and Wendel, 2010; Faria et al., 2010
1: Monitor ground and aerial applications of mosquito adulticides (naled, permethrin and malathion), to assess transport, distribution, concentration and persistence in NMS.

- **Permethrin:** Applied as Permanone 30-30 (30% Permethrin, 30% Piperonyl butoxide); PM Ground ULV

- **Malathion:** Applied as Fyfanon ULV Mosquito, 96.5% Malathion; PM ground ULV

- **Naled:** Applied as Dibrom Concentrate, 87.4% naled; AM Aerial ULV
Snake Creek Naled Monitoring Site Pre & post application Oct. 1-2, 2013

Water Sampling Sites

Spiked samples to verify recovery

Naled ug/L Field Application, 10-1-14

Sample Site

- M1
- M2
- M3
- M4, M5, M6
- M7
- M8
- M9, M10
- M11
- M12, M13
- M14
- M15
- M16
- M17

2hr-post

5hr-post

Naled ug/L
Permethrin Monitoring Site
Long Key/Layton July 23-24, 2014; pre & post application

Spiked recovery samples

Permethrin Field Application 6-23-14
- pre-appl
- 2hr-post
- 12hr-post

Sample Sites
Lobster Larvae Toxicity Tests:
With: Tom Matthews, Gabrielle Renchen & Casey Butler, at FWRI

Spiny lobster (Panulirus argus) Exposed to environmentally relevant concentrations of pesticide technical formulations. Toxicity end points will include:

- Acute toxicity, % survival and LC-50, 96 hr.

Phyllosome Larvae Puerulus Post Larva Adult Spiny Lobster
National Geographic photos
Lobster Juvenile, Pesticide Exposure Effects Tests

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Start Date</th>
<th>End Date</th>
<th>Trial #</th>
<th># lobsters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permethrin</td>
<td>10/19/12</td>
<td>10/31/12</td>
<td>1</td>
<td>151</td>
</tr>
<tr>
<td>Permethrin</td>
<td>2/19/13</td>
<td>3/1/13</td>
<td>2</td>
<td>175</td>
</tr>
<tr>
<td>Permethrin</td>
<td>1/7/14</td>
<td>1/16/14</td>
<td>3</td>
<td>175</td>
</tr>
<tr>
<td>Permethrin*</td>
<td>2/6/14</td>
<td>2/20/14</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Malathion</td>
<td>11/17/12</td>
<td>12/14/12</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>Malathion</td>
<td>3/19/13</td>
<td>3/27/13</td>
<td>2</td>
<td>172</td>
</tr>
<tr>
<td>Malathion</td>
<td>3/7/14</td>
<td>3/18/14</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>Naled</td>
<td>1/16/13</td>
<td>2/1/13</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>Naled</td>
<td>5/16/13</td>
<td>5/24/13</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td>Naled</td>
<td>12/7/13</td>
<td>12/20/13</td>
<td>3</td>
<td>175</td>
</tr>
</tbody>
</table>

* Sublethal effects on juveniles
Lobster Pueruli Toxicity Tests
FWRI, Marathon

Pesticide extraction

Lobster Puerulus Larvae

Lobster larvae dosing

Pesticide analysis
LC-MS/MS
Lobster Larvae Exposure Results
Permethrin Exposures

Range-finder

Lobster Larvae % Survival, Permethrin Exp.

10/19/12

<table>
<thead>
<tr>
<th>Target ug/L</th>
<th>SWC</th>
<th>AceRB</th>
<th>.01µg/L</th>
<th>.1µg/L</th>
<th>1µg/L</th>
<th>10µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-MS ug/L</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

% Survival

Perm-µg/L

% Survival

Results for Permethrin acute toxicity:

- **LC-50** = 3.0 ± 0.5 µg/L
- **NOEL** No Observable Effect Level = (no difference from control) = 1.8 ± 0.3µg/L

1st definitive

Lobster Larvae % Survival Permethrin Exp.

2/19/13

<table>
<thead>
<tr>
<th>Target ug/L</th>
<th>SWC</th>
<th>AceRB</th>
<th>.5µg/L</th>
<th>1µg/L</th>
<th>2µg/L</th>
<th>4µg/L</th>
<th>8µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-MS ug/L</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

% Survival

Perm-µg/L

% Survival

Results for Permethrin acute toxicity:

- **LC-50** = 3.0 ± 0.5 µg/L
- **NOEL** No Observable Effect Level = (no difference from control) = 1.8 ± 0.3µg/L

Final Definitive

Lobster Larvae % Survival, Permethrin Exp.

1/17/14

<table>
<thead>
<tr>
<th>Target ug/L</th>
<th>SWC</th>
<th>AceRB</th>
<th>1µg/L</th>
<th>2µg/L</th>
<th>3µg/L</th>
<th>4µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-MS ug/L</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

% Survival

Perm-µg/L

% Survival

Results for Permethrin acute toxicity:

- **LC-50** = 3.0 ± 0.5 µg/L
- **NOEL** No Observable Effect Level = (no difference from control) = 1.8 ± 0.3µg/L

Final Definitive
Summary of Naled & Malathion Lobster Exposures

Naled: 96-hr LC-50 = 12 ± 4 µg/L
- 96hr NOEL = 7 ± 2 µg/L

Malathion: 96hr NOEL > 20 µg/L

Malathion Exposure

Lobster larvae, 3/7/14
96-hr % Survival

<table>
<thead>
<tr>
<th>LC-MS µg/L</th>
<th>stdev</th>
<th>% survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td>0.27</td>
<td>100</td>
</tr>
<tr>
<td>5.08</td>
<td>0.69</td>
<td>100</td>
</tr>
<tr>
<td>10.20</td>
<td>1.78</td>
<td>100</td>
</tr>
<tr>
<td>15.33</td>
<td>0.66</td>
<td>100</td>
</tr>
<tr>
<td>20.59</td>
<td>3.55</td>
<td>100</td>
</tr>
</tbody>
</table>
Summary; Lobster 96 hour Acute Toxicity Tests

- **Permethrin:**
 - LC-50 = 3.0 ± 0.5 µg/L
 - NOEL (No Observable Effect Level) = 1.8 ± 0.3 µg/L

- **Naled:**
 - LC-50 96hr = 12 ± 4 µg/L
 - NOEL = 7 ± 2 µg/L

- **Malathion:** LC-50 96hr > 20 µg/L
 - LC-50 96hr > 20 µg/L
 - NOEL > 20 µg/L
Coral Larvae Toxicity Tests
Dr. Kim Ritchie & Dr. Emily Hall;
Mote Tropical Research Lab, Summerland Key, FL

Larvae of the scleractinian coral (*P. astreoides*) exposed to environmentally relevant concentrations of the technical formulations of each pesticide. Toxicity end points include:

- Acute toxicity; 96 hour % Survival and LC-50.
Collecting & Dosing Coral Larvae

Live Coral Spawning

Collecting larvae

Coral larvae dosing & Monitoring
Coral Larvae Exposure to Naled and Parmethrin

Summary of Coral Larvae 96hr Acute Toxicity Tests:
Naled & Permethrin Results:
- NOEL Naled > 8 ug/L of Naled;
- NOEL Permethrin > 8 ug/L permethrin.
Results & Conclusions

1. Expected Environmental Concentrations (EEC):
 - **Naled:**
 - 2 hours post appl. = 0.2 to 3.14 µg/L (in canals); 0.02-0.6 µg/L outside
 - 5 hours post appl. = 0.01 to 0.17 µg/L
 - **Permethrin:** < 0.5 µg/L 2 hr & 12 hr post appl.

2. Acute Toxicity; NOEL: 96 hr % survival vs Controls
 - **Coral larvae:**
 - Naled; > 8 µg/L;
 - Permethrin; > 8 µg/L
 - Malathion; ? No mortality, LC-MS verification malfunction
 - **Lobster larvae**
 - Naled; 7 ± 2 µg/L
 - Permethrin; 1.8 ± 0.3 µg/L
 - Malathion > 20 µg/L

3. Conclusions
 - **Coral larvae, *P. astreoides***: EEC << toxic concentration = No Acute toxicity to coral larvae for field applications of Naled, Permethrin or Malathion in the Atlantic or FL Bay adjacent to the Snake Creek study area.
 - **Lobster larvae, *P. argus***: EEC << Toxic concentration = No Acute toxicity to lobster larvae for field applications of Naled or Permethrin in the Atlantic adjacent to the Layton Key Canals.
Recommendations

- Conduct monitoring of additional pesticide field applications and residential misting systems.

- Test toxicity to coral polyps and lobster 1st stage juvenile = includes ingestion of contaminated prey

- Initiate studies of sublethal effects using cellular biomarkers & physiological impact: Biomarkers of effects, including;
 - Catalase and Superoxide Dismutase activity;
 - Phenoloxidase (PO) activity;
 - Lipid peroxidation

- Investigate synergistic effects from simultaneous exposure to two or more chemical contaminants.

- Study synergistic effects of climate change with pesticide exposure.
 - Temperature; pH
Application of Results

Provide FL Keys NMS Resource Managers and FL Keys Mosquito Control District Managers with empirical data to:

- preserve and enhance the living resources of the National Marine Sanctuary
- while maintaining adequate mosquito control to protect the public health and economic well being of the FL Keys.
Shared Project Support

<table>
<thead>
<tr>
<th>Funding/Collaborators</th>
<th>Year-1</th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA WQPP, FL Keys NMS;</td>
<td>$70,000</td>
<td>$30,000 ($100,000 max)</td>
</tr>
<tr>
<td>FL Keys Mosquito Control Dist.;</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>Levi Research Fund (Mote);</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>Project Budget</td>
<td>$120,000</td>
<td>$80,000 ($200,000/ 2 yrs)</td>
</tr>
</tbody>
</table>

In-Kind Support

- **NOAA-National Marine Sanctuary;** In-Kind Support (advice; interpretation)
- **FL FWRI field & lobster toxicity;** In-Kind Support ($33,670) (FWRI- in kind staff time for collecting and monitoring lobster larvae)
- **Mote, Field monitoring & Coral toxicity;** In-kind Support ($33,000) (POR coral and Ocean Acidification-in Kind staff time for collecting & monitoring coral larvae)