Assessing Effects of mosquito control pesticides on coral and lobster larvae in the Florida Keys National Marine Sanctuary.

Richard Pierce, P.I.,

Mote Marine Laboratory, Ecotoxicology

Project manager, field monitoring, pesticide analysis

Kimberly Ritchie, Co-Pl Mote TRL, Marine Microbiology Coral larvae toxicity studies

Thomas Matthews, Co-PI, FL Fish & Wildlife Research Institute

Project Goals

- 1. To determine if applications of mosquito control pesticides in the FL Keys result in toxic effects to NMS organisms.
 - Monitor FKMCD applications to determine the EEC in the NMS
 - Conduct Toxicity tests on select non-terget organisms
- 2. Work with stakeholders to assess the risk and develop appropriate response strategies as needed to maintain mosquito control while reducing the risk to the NMS.

- Permethrin: Applied as Permanone 30-30 (30% Permethrin, 30% Piperonyl butoxide); PM Ground ULV
- Malathion: Applied as Fyfanon ULV Mosquito,
 96.5% Malathion; PM ground ULV

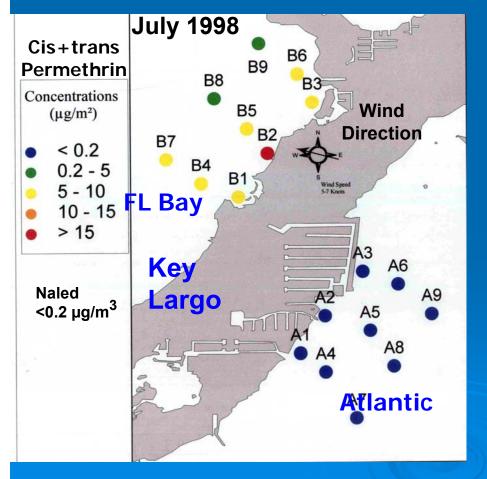
Naled: Applied as Dibrom
 Concentrate, 87.4% naled; AM Aerial ULV

Coral larvae: *Porites astreoides*,

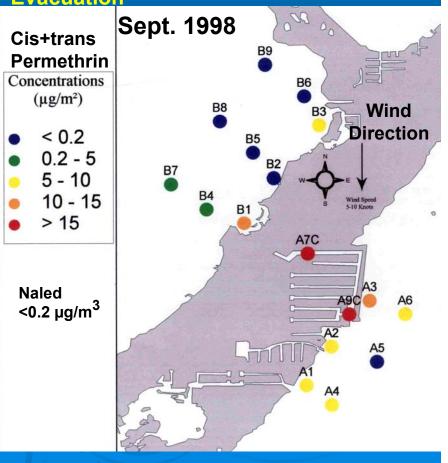
Spiny Lobster Puerulus (pre-juvenile larval stage) *Panulirus argus*

Unique Public-Private Partnership

Including Stakeholders from Federal, State & Local Agencies and Mote, an Independent Non-profit Research Institution



Background 1998 Study at Key Largo Permethrin & Naled Applications: Filter deposition and water samples



June 16-18, and July 28-29, 1998 Evening, ground ULV Permanone; Morninr, Aerial ULV Dibrom;

September 22-23, 1998

Evening, ground ULV Permanone Morning, no Dibrom, Hurricane Georges Evacuation

Results of 1998 Field Applications

• Drift into National Marine Sanctuary:

• Filters:

Permethrin: detected on filters = drift, driven by wind speed & direction

- Naled & DDVP, none detected on filters

Water Surface Microlayer:

- Permethrin, none detected in NMS surface water (<0.01 ug/L)
- canal surface microlayer: 5.1 to 9.4 ug/L
- Naled, none detected (<0.01 ug/L)
- DDVP in one sample, windward side (0.19ug/L)

Tidal Transport, Subsurface Water (~ 20cm depth):

- Permethrin: one site windward side Atlantic (0.07ug/L)
- canals, none detected, 2 hrs post appl.
- Naled: no naled detected (<0.01ug/L)
- DDVP: June; 5 of 9 windward sites, .08 to .56ug/L

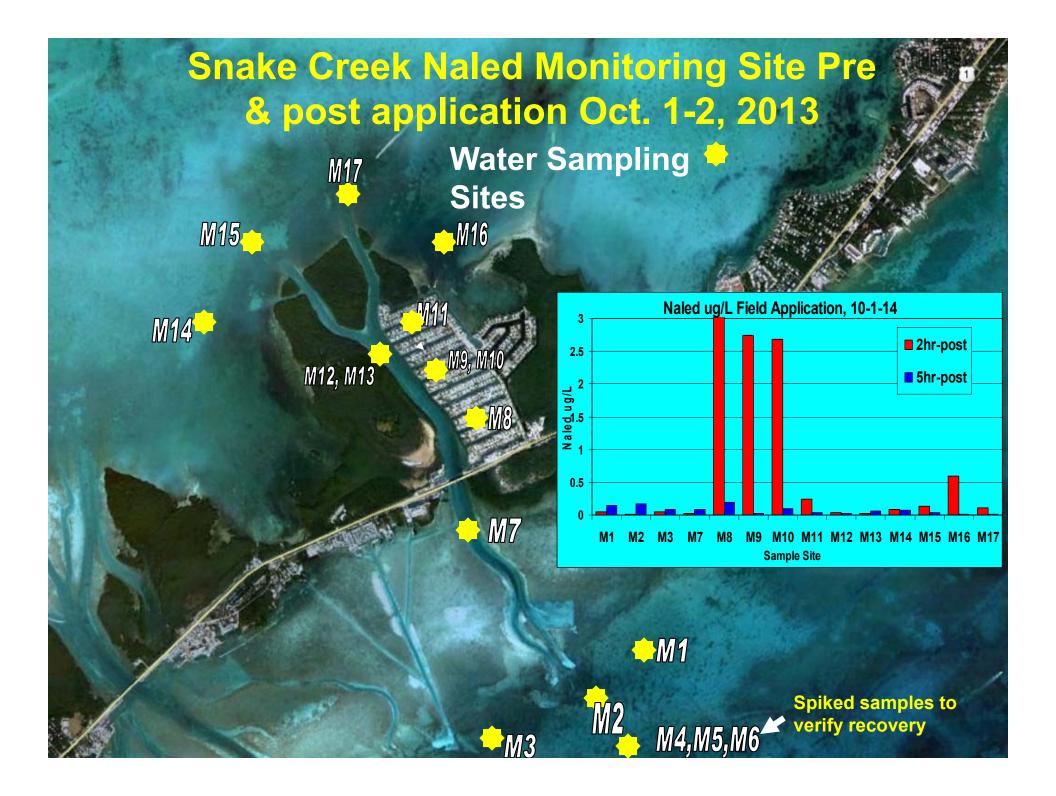
Acute Toxicity (96 hr LC-50) of Permethrin, Dibrom, DDVP and Malathion to Mysidopsis bahia, and Penaeus duoarum. Persistence (1/2 life) and solubility in seawater.

<u>Pesticide</u> <u>M. Bahia</u>	9 <u>6 hr LC-50</u> P. duoarum	ug/L (ppb) days	Half Life mg/L (pp	<u>Solubility</u> m)
Permethrin (Note: tech.~	.02-0.1 1/3 cis, 2/3 tra	0.2 Ins; toxicity ci	1-3 s>>>trans) -	.006 - <i>P50</i>
Naled	4.7-8.8	1.8	< 1	2,000
DDVP	19	NA	< 1	NA
Malathion	2.2	280	2-4	130

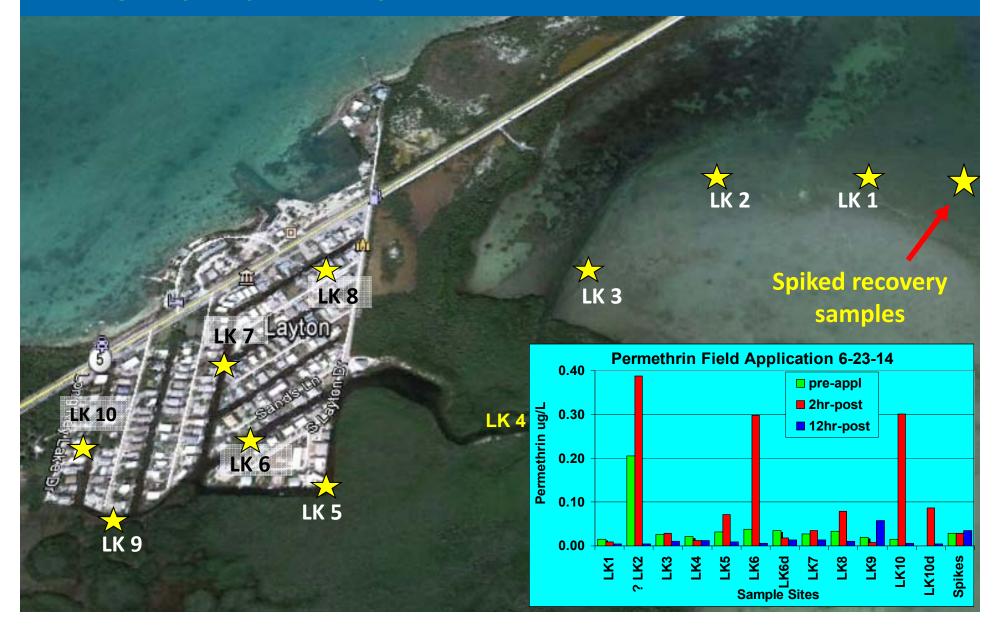
References: Schimmel et al., 1983; Cripe, 1994; Mason and Wendel, 2010; Faria et al., 2010

Current Project Mote EPA-WQPP FL Keys NMS Study Objectives 2012 to 2014

1: Monitor ground and aerial applications of mosquito adulticides (naled, permethrin and malathion), to assess transport, distribution, concentration and persistence in NMS.



 Permethrin: Applied as Permanone 30-30 (30% Permethrin, 30% Piperonyl butoxide); PM Ground ULV


Malathion: Applied as Fyfanon ULV Mosquito,
 96.5% Malathion; PM ground ULV

Naled: Applied as Dibrom Concentrate,
87.4% naled; AM Aerial ULV

Permethrin Monitoring Site Long Key/Layton July 23-24, 2014; pre & post application

Lobster Larvae Toxicity Tests:

With: Tom Matthews, Gabrielle Renchen & Casey Butler, at FWRI

Spiny lobster (Panulirus argus) Exposed to environmentally relevant concentrations of pesticide technical formulations. Toxicity end points will include:

• Acute toxicity, % survival and LC-50, 96 hr.

Phyllosome Larvae

National Geographic photos

Adult Spiny Lobster

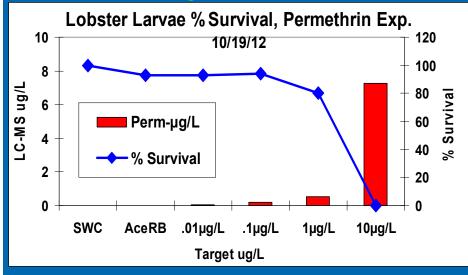
Lobster Juvenile, Pesticide Exposure Effects Tests					
Pesticide	Start Date	End Date	Trial #	# lobsters	
Permethrin	10/19/12	10/31/12	1	151	
Permethrin	2/19/13	3/1/13	2	175	
Permethrin	1/7/14	1/16/14	3	175	
Permethrin*	2/6/14	2/20/14	4	50	
Malathion	11/17/12	12/14/12	1	150	
Malathion	3/19/13	3/27/13	2	172	
Malathion	3/7/14	3/18/14	3	84	
Naled	1/16/13	2/1/13	1	150	
Naled	5/16/13	5/24/13	2	61	
Naled	12/7/13	12/20/13	3	175	
* Sublethal effects	juveniles				

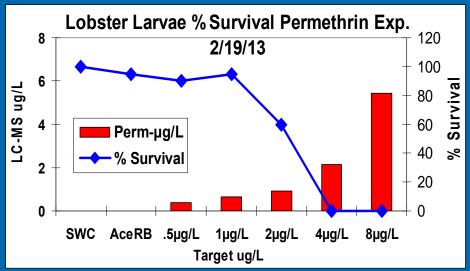
Lobster Pueruli Toxicity Tests FWRI, Marathon

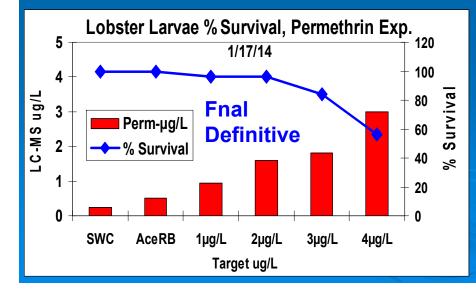
Pesticide extraction

Lobster Puerulus Larvae

Lobster larvae dosing

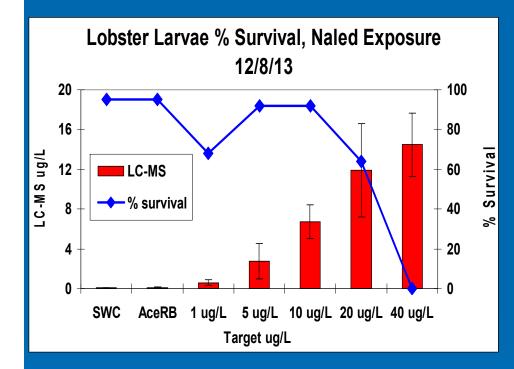



Pesticide analysis LC-MS/MS


Lobster Larvae Exposure Results Permethrin Exposures

Range-finder

1st definitive



Results for Permethrin acute toxicity:

• LC-50 = 3.0 ± 0.5 μg/L

 NOEL No Observable Effect Level = (no difference from control) = 1.8 ± 0.3µg/L

Summary of Naled & Malathion Lobster Exposures

Naled: 96-hr LC-50 = 12 \pm 4 µg/L - 96hr NOEL = 7 \pm 2 µg/L

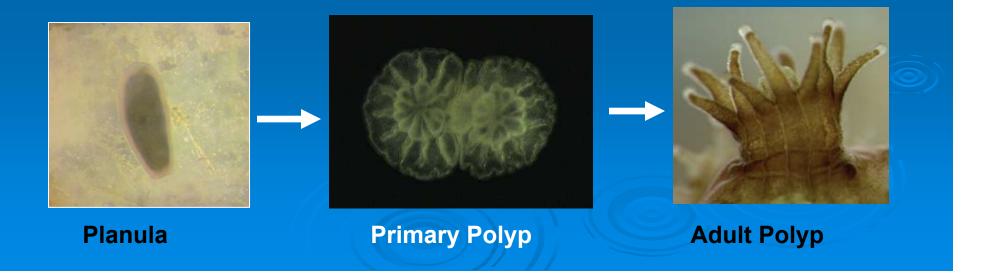
Malathion: 96hr NOEL > 20 µg/L

Malathion Exposure					
Lobster larvae, 3/7/14 96-hr % Survival					
LC-MS µg/L	stdev	% survival			
2.20	0.27	100			
5.08	0.69	100			
10.20	1.78	100			
15.33	0.66	100			
20.59	3.55	100			

Summary; Lobster 96 hour Acute Toxicity Tests

Permethrin:
 LC-50 = 3.0 ± 0.5 μg/L
 NOEL (No Observable Effect Level) = 1.8 ± 0.3 μg/L

Naled:
 LC-50 96hr = 12 ± 4µg/L
 NOEL = 7 ± 2 µg/L


Malathion: 96-hr LC-50 > 20 µg/L
 LC-50 96hr > 20µg/L
 NOEL > 20 µg/L

Coral Larvae Toxicity Tests

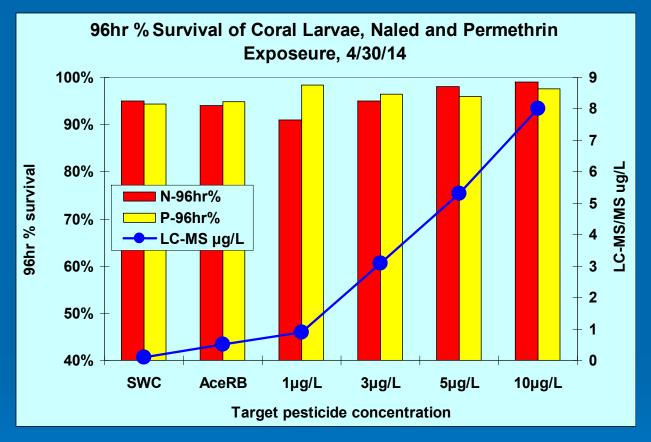
Dr. Kim Ritchie & Dr. Emily Hall; Mote Tropical Research Lab, Summerland Key, FL

Larvae of the scleractinian coral (*P. astreoides*) exposed to environmentally relevant concentrations of the technical formulations of each pesticide. Toxicity end points include:

Acute toxicity; 96 hour % Survival and LC-50.

Collecting & Dosing Coral Larvae

Live Coral Spawning


Collecting larvae

Coral larvae dosing & Monitoring

Coral Larvae Exposure to Naled and Parmethrin

Summary of Coral Larvae 96hr Acute Toxicity Tests: Naled & Permethrin Results:

- NOEL Naled > 8 ug/L of Naled;
- **NOEL Permethrin** > 8 ug/L permethrin.

Results & Conclusions

1. Expected Environmental Concentrations (EEC):

- Naled: 2 hours post appl.= 0.2 to 3.14 μg/L (in canals); 0.02-0.6 μg/L outside
 5 hours post appl.= 0.01 to 0.17 μg/L
- Permethrin: < 0.5 μg/L 2 hr & 12 hr post appl.

2. Acute Toxicity; NOEL: 96 hr % survival vs Controls

• Coral larvae;

- Naled; > 8 µg/L;
- permethrin; > 8 μg/L
- Malathion; ? No mortality, LC-MS verification malfunction

• Lobster larvae

- Naled; 7 ± 2 μg/L
- Permethrin; 1.8 \pm 0.3 μ g/L
- Malathion > 20 µg/L

3. Conclusions

• Coral larvae, *P. astreoides*: EEC << toxic concentration = No Acute toxicity to coral larvae for field applications of Naled, Permethrin or Malathion in the Altantic or FL Bay adjacent to the Snake Creek study area.

• Lobster larvae, *P. argus*: EEC << Toxic concentration = No Acute toxicity to lobster larvae for field applications of Naled or Permethrin in the Atlantic adjacent to the Layton Key Canals.

Recommendations

- Conduct monitoring of additional pesticide field applications and residential misting systems.
- Test toxicity to coral polyps and lobster 1st stage juvenile = includes ingestion of contaminated prey
- Initiate studies of sublethal effects using cellular biomarkers & physiological impact: Biomarkers of effects, including;
 - Catalase and Superoxide Dismutase activity;
 - Phenoloxidase (PO) activity;
 - Lipid peroxidation
- Investigate synergistic effects from simultaneous exposure to two or more chemical contaminants.
- Study synergistic effects of climate change with pesticide exposure.
 Temperature; pH

Application of Results Provide FL Keys NMS Resource Managers and FL Keys Mosquito Control District Managers with empirical data to:

 preserve and enhance the living resources of the National Marine Sanctuary

• while maintaining adequate mosquito control to protect the public health and economic well being of the FL Keys.

Shared Project Support

Funding/Collaborators:	Year-1	Year-2
US EPA WQPP, FL Keys NMS;	\$70,000	\$30,000 (\$100,000 max)
FL Keys Mosquito Control Dist.;	\$25,000	\$25,000
<u>Levi Research Fund (Mote);</u> Project Budget	<u>\$25,000</u> \$120,000	<u>\$25,000</u> \$80,000 (\$200,000/ 2 yrs)

In-Kind Support NOAA-National Marine Sanctuary; In-Kind Support (advice; interpretation)

FL FWRI field & lobster toxicity; In-Kind Support (\$33,670) (FWRI- in kind staff time for collecting and monitoring lobster larvae)

Mote, Field moniting & Coral toxicity; In-kind Support (\$33,000) (POR coral and Ocean Acidification-in Kind staff time for collecting & monitoring coral larvae)