Assessing Effects of Mosquito Control Pesticides on Non-targeted Organisms in the Florida Keys National Marine Sanctuary

> Richard Pierce, P.I., Mike Henry, Trish Blum, Sam Harlow Mote Marine Laboratory, Ecotoxicology

Kimberly Ritchie, Erich Bartels Co-Pls Mote TRL, Marine Microbiology

Thomas Matthews, Co-PI, Gabby Renchen & Casey Butler FL Fish & Wildlife Research Institute

Unique Public-Private Partnership

Including Stakeholders from Federal, State & Local Agencies and Mote, an Independent Non-profit Research Institution

Project Goals

Goal 1: Determine if applications of mosquito control pesticides in the FL Keys cause harmful effects to non-targeted NMS organisms.

Goal 2: Work with stakeholders to assess the potential risk and develop appropriate response strategies as needed to maintain mosquito control while reducing the risk to the NMS.

Goal 1 Objectives

• Objective-1. How much, Where and How Long? Monitor distribution, concentration and persistence of mosquito control pesticides in NMS, following ground and aerial applications.

 Permethrin: Applied as Permanone 30-30 (30% Permethrin, 30% Piperonyl butoxide); PM Ground ULV

Malathion: Applied as Fyfanon ULV Mosquito,
 96.5% Malathion; PM ground ULV

Naled: Applied as Dibrom Concentrate,
 87.4% naled; AM Aerial ULV

(contains both Naled and DDVP; Naled degrades to DDVP over time)

Objective-2: So What?

Determine toxicity to sentinel organisms to assess acute lethal and sublethal toxicity from exposure to Expected Environmental Concentrations (EEC) of Pesticides:

• Initial Study: Early life (larval) stages of coral and lobster

• Extension: 1st stage juvenile lobster and coral polyps

Coral Spawn

Coral planula larvae

Field Sampling protocol Cooperative with FWRI-Marathon

Naled: Morning Aerial Application Sample Collection:

- Pre-application; Previous afternoon
- Application: early morning
- Post- application; 2-hrs & 5 to 6hrs

Permethrin & Malathion: Evening Ground Application Sample Collection:

- Pre-application; 2 to 4 hours
- Application: evening, 7 to 9 PM
- Post-application; 2- hrs & 12 hrs

FL Keys Map showing pesticide monitoring areas

Permethrin µg/L Application Monitoring Sites Layton Key, July 23-24, 2014

Permethrin, µg/L, Monitoring Sites Layton Key, August 13, 2015

Naled & DDVP μg/L Application Monitoring Sites Tavernier Creek 9/14/2015 (pre-appl. = <0.1 μg/L)

Summary of Field Monitoring Results permethrin, naled/DDVP in µg/L

Naled + DDVP (Dibrom Concentrate): Snake Creek, 10-1-13 & Tavernier Key, 9/14/15: inside canals 2hr = <0.05 to 3.5; 5hr = <0.05 to 0.3 outside canal 2hr = < 0.05 to 0.4; 5hr = <0.05 to 0.3

 Permethrin (Permanone 30-30):

 Layton Key, 7-14-14 & 8/13/15

 inside canals 2hr = < 0.05 to 4.0; 12hr = <0.05 to 3.2</td>

 Note: (high 4.0 & 3.2 μg/L in only one canal)

 outside canal 2hr = < 0.05 to 0.9; 12hr = <0.05 to 0.1</td>

Objective 2: Pesticide toxicity to coral and lobster larvae

Lobster Larvae Toxicity Tests: With: Tom Matthews, Gabby Renchen & Casey Butler, FWRI

Spiny lobster (Panulirus argus) Exposed to environmentally relevant concentrations of pesticide technical formulations. Toxicity end points include:

• Acute toxicity, % survival and LC-50, 96 hr.

Phyllosome Larvae

Puerulus Larvae & juvenile

Adult Spiny Lobster

Lobster Pueruli Toxicity Tests FWRI & Mote

Lobster larvae dosing, FWRI

Pesticide extraction, FWRI

Lobster larvae dosing, Mote

Monitoring water quality, Mote

Pesticide extraction Mote

Pesticide Analysis HPLC-MS/MS Mote

Coral Larvae Toxicity Tests

Kim Ritchie, Emily Hall, Erich Bartels; Mote Tropical Research Lab, Summerland Key, FL

Larvae of the scleractinian coral (*P. astreoides*) exposed to environmentally relevant concentrations of the technical formulations of each pesticide. Toxicity end points include:

• Acute toxicity; 96 hour % Survival and LC-50.

Collecting Dosing & Monitoring Coral Larvae

Live Coral Spawning

Collecting larvae

Coral larvae in petri dish

Coral dosing

Monitoring Coral

Lobster Larvae Exposure Permethrin 96 hr exposure

Lobster larvae % Survival; Permethrin Definitive: Ave. of 2/19/13 & 1/17/14

Permethrin acute toxicity: Range-finder: LC50 , 96 hr = between 1 and 10µg/L Definitive LC50, 96 hr = 4.5 ± 1.0 µg/L

Results from Naled Lobster pueruli Exposure LC50 96 hr Acute Toxicity,

Naled LC-50 96hr:

 No significant difference between control and exposures through 9.5 µg/L Naled

• 100% mortality at 21 µg/L Naled

1st Stage Lobster Juveniles Synergistic Effects From Exposure to both Permethrin and Naled

% Survival through 9 days

Summary of Coral Larvae Exposures % Survival at 96 hours Exposure

96 hour % survival Naled + DDVP μg/L				96 hour % survival Permethrin µg/L			
N+D µg/L	stdev	% survival	stdev	Permethrin µg/L		% survival at	96 hrs
0.19	0.07	84%	7.4	Mean	stdev	mean	stdev
0.40	0.45	85%	8.1	0.1	0.8	80.8	94%
0.60	0.26	87%	4.5	0.7	0.2	93.6	94%
4.00	1.27	87%	4.5	1.9	0.7	93.6	94%
7.00	0.54	83%	7.9	57	1.8	91.2	93%
10.40	2.04	82%	8.4	0.5	0.0	92.8	05%
Mean & standard deviation of multiple exposure studies				9.5			90%

Naled: 96-hr LC-50 > 10 µg/L

Permethrin 96-hr LC-50 > 9.5 µg/L

SUMMARY

1. Expected Environmental Concentrations (EEC):

Naled: • 2 hours post appl.= <0.05 to 3.5 µg/L (in canals)
 • 5 hours post appl.= 0.01 to 0.4 µg/L

• Permethrin

- 2 hrs post = < 0.5 μ g/L to 4.0 μ g/L (in canals)
- 12 hrs post = <0.5 to 0.9 µg/L
- 2. Acute Toxicity; LC-50, 96 hr

Lobster larvae

- Naled; >9.5 ± 1 μ g/L ; - Permethrin; 4.5 ± 1.0 μ g/L

- Coral larvae;
 - Naled; > 10 μg/L;
 - permethrin; > 9.5 µg/L

Conclusions

 Naled: No Acute Toxicity (LC50 96 hr) for Coral larvae, *P. acropora*:
 EEC << LC50 96 hr toxic concentration from field applications of Naled or Permethrin in the FL Keys NMS.

 Permethrin: EEC at toxic level for lobster larvae in restricted flow canal.

No Acute toxcity for coral or lobster larvae outside canals.

 Possibel synergistic effect from exposure to multiple pesticides.

Need To Know

1. Chronic, Sublethal effects at EEC

- development, reproduction
- Biomarkers of effect
- Cell ultrastructure

2.Synergistic effects with:

- Other pesticides: bifenthrin,
- Pharmaceuticals: (endocrine disruptors): progesterone, estradiol,
- Climate change: Changing Temperature & pH

3. Toxicity to additional FL Keys Organisms:

• Sea urchins, sponges, fish

Residential Pesticide applications

Monitor Drift and runoff from:

• Pesticide misting systems: (This Study)

• Lawn maintenance: (Future Study)

Common Goal for All Stakeholders:

• preserve and enhance the living resources of the National Marine Sanctuary

• while maintaining adequate mosquito control to protect the public health and economic well being of the FL Keys.

