

Quantifying the impact of shallow wastewater injection on groundwater nutrient fluxes to surface waters in the Florida Keys National Marine Sanctuary: a pilot study

Project Plan

Project leads: Miquela Ingalls and Lee Kump

PennState College of Earth and Mineral Sciences

Meet our chief analytical chemists

Megan Martin BS, Michigan State, '15 Incoming PSU MS student

Kate Meyers BS, Franklin & Marshall, '19 Incoming PSU PhD student

What do we know about the problem?

Despite stricter regulations on wastewater management in FL, the surface waters in the FKNMS still bear elevated nutrient loads (FDEP RAD, 2018; Briceño & Boyer, 2020)

23 WBIDs are impaired for nutrients within the halo zone (<500 m from shore)

Nitrate impairment of halo zone around Marathon

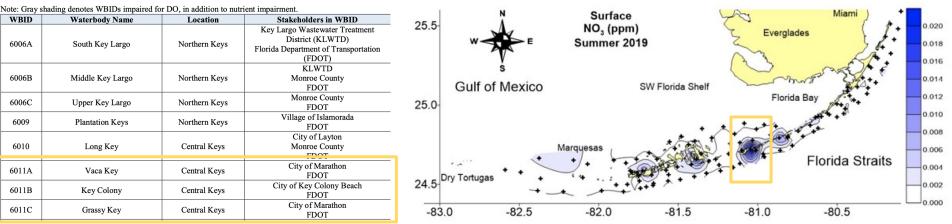
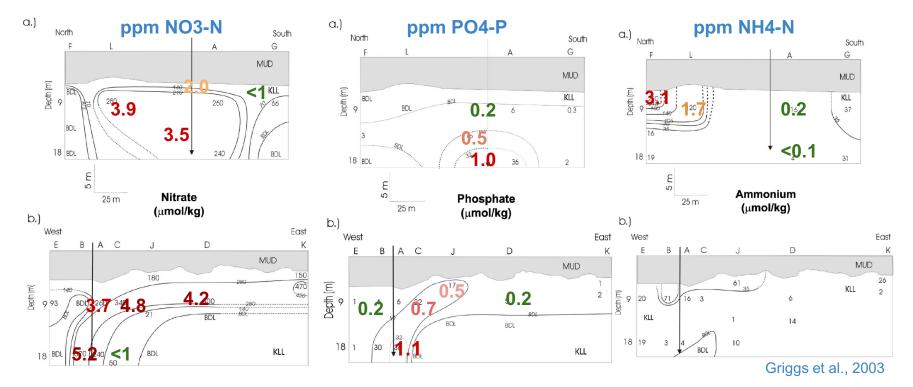


Table 1. WBIDs with impairments in the Florida Keys

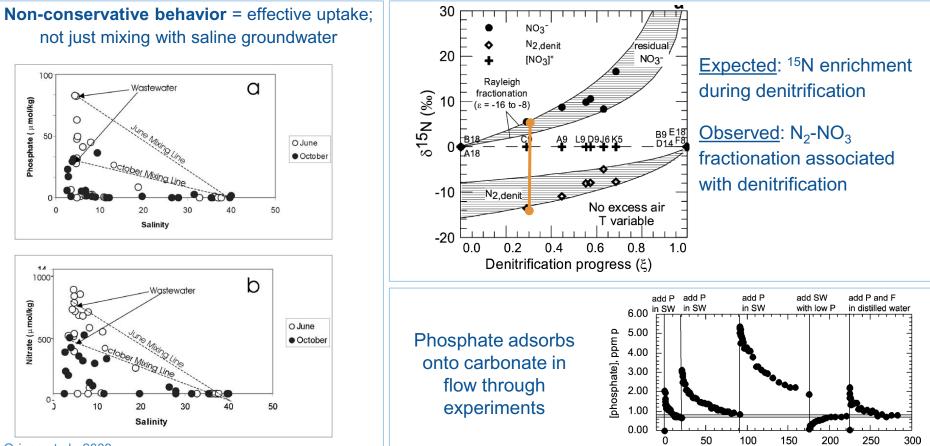
What do we know about the problem?

Effluent plumes are **buoyant**, and rapidly return to the surface after injection

Key Largo Limestone


No Holocene mud cap at Marathon + ~45% porosity, high permeability = **rapid groundwater migration**

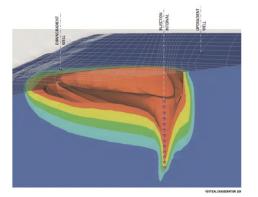
Images: http://www.uwosh.edu/faculty_staff/hiatt /Teaching/360_Florida/2005_Ancient.html


What do we know about the problem?

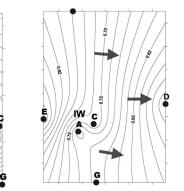
Nitrate and phosphate were effectively removed from the slower velocity flow path margins by *microbial N cycling* and *phosphate adsorption* onto karst at Key Colony Beach, but nitrogen loads remained high in the central, faster flow paths.

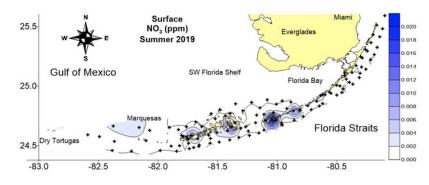
EPA wastewater effluent standards @ Marathon Area 3 WWTF: 3 ppm N03-N; 1 ppm PO4-P

Uptake and adsorption effectively remove N + P in slow flow margins


time, days

Griggs et al., 2003


- (1) to characterize wastewater **plume geometry**, **composition and migration** at a single disposal facility in the FKNMS,
- (2) to quantify the impact of shallow well effluent injections on **nitrogen and phosphorus contents** of groundwater in the halo zone
- (3) to evaluate **generalizability** of our findings to sites with different geology, effluent chemistry and volume, and plume migration, with the goal of informing FDEP regulatory decisions.


geometry, density

migration

composition

Broad overview of work plan

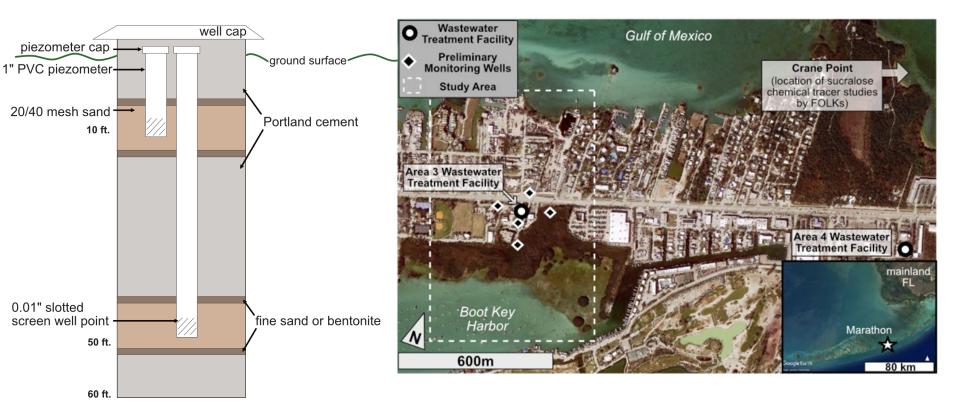
(1) Characterize the **geometry, travel time, and surface emergence** of wastewater plume nutrient loads

(2) Report the **N** and **P** nutrient content of groundwater and nearshore surface waters

(3) Calculate the stability of dissolved phases within the wastewater effluent and groundwaters as an **assessment of water quality**, **mineral reactivity and nutrient removal efficiency**

(4) Assimilate geochemical data with **SEAWAT reactive transport model** to evaluate the transferability of knowledge to wastewater management in FKNMS and other carbonate aquifers

(5) Assess the **causative relationship** between shallow injection well effluent and high nutrient loads and other anthropogenic contaminants to nearshore surface waters


Study site: Marathon Area 3 Wastewater Treatment Facility

- 5 sampling wells will be drilled in early summer by J & C Drilling
- An additional 5 wells will be drilled early 2022; locations selected based on preliminary characterization of plume geometry

Well design

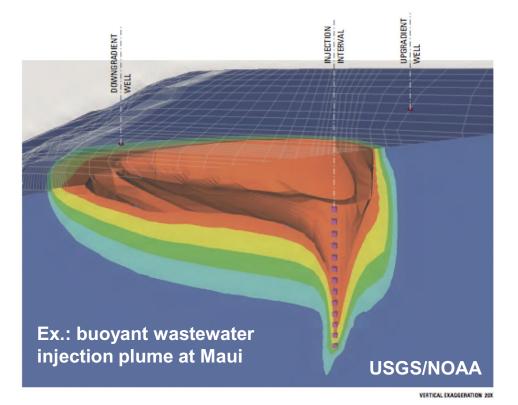
Analytical overview - all in NELAC-certified labs

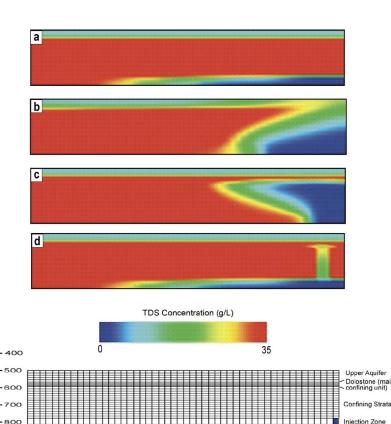
Nutrient concentrations (Total Nitrogen, Phosphate, Ammonium) within the main flow path and slower velocity margins of plume

Dissolved N₂ gas concentrations to quantify magnitude of denitrification along flow path

^{15}**N of dissolved N**₂, **NO**₃⁻ and **NO**₂⁻ to quantify the contribution of denitrification versus other nitrate reduction processes

Tracer studies: pharmaceuticals + fluorescence (rhodamine and fluorescein dye injections)


Dissolved ion concentrations: calculate N and P speciation from dissolved ions, temperature, and salinity to evaluate chemical reactivity and sequestration potential



USGS SEAWAT modeling

Hunt, 2006, Ground-Water Nutrient Flux to Coastal Waters and Numerical Simulation of Wastewater Injection at Kihei, Maui, Hawaii, USGS, Scientific Investigations Report 20065283 Maliva et al., 2007, *Hydrogeology* (wastewater injection in SE FL, 10 year effluent migration)

Distance from injection well (m)

Injection Well

Depth (m)

-900

Hypothesis testing

Hypothesis: Short residence times of shallow wastewater effluent injections in the aquifer reduces the efficiency and permanence of nutrient removal.

Experiment: Inject mixed seawater + effluent to reduce density contrast between the plume and surrounding saline groundwater

Predicted outcome: Increased residence time in subsurface karst will increase denitrification efficiency and phosphate adsorption onto KLL

Current work schedule

		Year 1 Year 2																			Year 3															
	2021												2022												2023							\square	20	2024		
Major Tasks	М	J	J	Α	s	0	N	D	J	F	М	Α	М	J	J	Α	s	0	Ν	D	J	F	М	Α	М	J	J	Α	s	0	Ν	D	J	F	М	Α
Fieldwork															Dortioin						41.0	- £									41.0					
Well installation															ţL_	+		Pa		ipa	atio	n t	ror	n r	OLKs citizen so					SC	ier	านร	เร		J	
Sampling + Field Measureme	ents																													\square			\square	\square		
Tracer Testing (Field Fluores	cend	ce)		ſ	unm	noni	tore	d in	betv	veer	sai	mpli	ng																				\square	\square		
Blending Experiment				\Box								Ĺ.																								
Analyses + Modeling								Y1	bat	ch a	naly	/ses)			ſ	′2 b	atch	ana	lyse	es)					Y3 batcl			atch	ana	lvse	s				
Plume modeling (FEFLOW)													Í															Γ^{-}					\sim			
Nutrient concentrations (N, P	, C)																																			
Dissolved gases (N ₂ , Ar)							\square																					\square					\square	\square		
Nitrogen isotopes (N ₂ , NO ₃ ⁻)																																		\square		
Dissolved ions, tottal ALK																																				
Pharmaceutical concentration	ns (t	raciı	ng)																																	
Synthesis																																				
Data reduction																																				
PHREEQC modeling/phase	D																																			
Report and manuscript writin	g																																			
Conferences																																				
	Lo	cat	tion		Penn State					М	arat	hon	FL	FL FDEP Centra					ral Lab			SGS Reston, VA				FIU DEP-certified lab					Elsewhere					