Lone Cabbage Reef (LCR) Restoration

LCR Restoration: Motivation

- Seavey et al. 2011: large losses in intertidal oyster reefs 1982-2011
 - Aerial surveys and on-the-ground assessment
 - Horseshoe Beach to Corrigan's Reef

LCR Restoration: Motivation

- 66% loss of intertidal oyster reef 1982-2011
- Largest losses "offshore" oyster reef

LCR Restoration: Motivation

- Seavey et al. results led to...
- Pilot restoration project 2013 (Frederick et al. 2016)

• Ho: Does addition of rock as durable substrate allow oyster colonization and persistence?

- Ho: Does addition of rock as durable substrate allow oyster colonization and persistence?
 - 4 rock restoration sites
 - 4 control sites
 - Each about 21 m x 21 m

- Ho: Does addition of rock as durable substrate allow oyster colonization and persistence?
 - 4 rock restoration sites
 - 4 control sites
 - Each about 21 m x 21 m
 - 9x increase in oysters on restored vs. control sites

- Frederick et al. pilot project results led to...
- Large-scale restoration of LCR 2017-2024

 22 reef elements along relic reef footprint identified from maps created in the 1800's

- 22 reef elements along relic reef footprint identified from maps created in the 1800's
- ~17,000 yds³ locally sourced limestone 8-18" in size (13,00m³; 20-45 cm)
 - Same limestone as found along this coast "Ocala formation"

- 22 reef elements along relic reef footprint identified from maps created in the 1800's
- ~17,000 yds³ locally sourced limestone 8-18" in size (13,00m³; 20-45 cm)
 - Same limestone as found along this coast "Ocala formation"
- ~ 5 km in total length; ~ 10-m wide

- 22 reef elements along relic reef footprint identified from maps created in the 1800's
- ~17,000 yds³ locally sourced limestone 8-18" in size (13,00m³; 20-45 cm)
 - Same limestone as found along this coast "Ocala formation"
- ~ 5 km in total length; ~ 10-m wide
- Construction completed summer 2018

- Line transect to monitor restored and wild intertidal oyster bars
- Autonomous WQ monitoring stations at 10 sites
- Rigorous data management and reporting standards

- Line transect to monitor restored and wild intertidal oyster bars
- Autonomous WQ monitoring stations at 10 sites
- Rigorous data management and reporting standards
 - Database to manage WQ files
 - WQ sensor library
 - Data entry system
 - Standard reports routinely generated using R-markdown
 - Shiny App for water quality

Shiny App for Public WQ Visualization

← → C ①	i 🍐 Carala Sakalar 🔽 Watari	annung of Station CD Station	Weterlaude NOA	Ma Ma 🕐 The Dublis later		☆	🛃 🔶 🙆 🇯 🌏
SITE (Input needed for all tabs, except Wind Rose)	MAP OF SELECTED SITE	S DATA LOGGER MEASUREMENTS	ALL SITES COMPARISON	ROLLING AVERAGES	LAKEWATCH	WIND ROSE	W Gther bookin
1 ▼	Rolling average	s definition					
COMPARISON SITE (input needed for all tabs, except Wind Rose)	Rolling or moving average Select the desired Date R display.	es are a way to reduce noise and smoo ange, Site and Comparison Site. Select	th time series data. Rolling aver additional information such as	ages were calculated usi the type of Observations	ng the function `r (Salinity, Conduct	ollmean()` in the ivity, or Tempera	R package `zoo`. ture) for the figure to
	Rolling Averages of Sit	es 1 and 3 (2021-01-10 to 2021-02-24)					
DATE RANGE (input needed for Data Logger, Rolling Averages and Windrose Tabs)	Site: 1		Site: 1		Site: 1		
2021-01-10 to 2021-02-24	Ro	Rolling_Avg: Three Days		Rolling_Avg: Seven Days		Rolling_Avg: Fifteen Days	
OBSERVATIONS (input needed for Data Logger Measurements and Rolling Averages tabs) Salinity (ppt) Conductivity (mS/cm) Temperature (C) Overlay only available in `Hourly` Temporal Resolution (Data Logger Measurements tab)	20- 10- 0-				MM Mar MM Mann		
Overlay point sample data (Salinity (YSI only), Conductivity (Lakewatch and YSI), or Temperature (VSI only)?	Site: 3		Site: 3 Bolling Avg: Seven Dave		Site: 3 Bolling, Avg: Fifteen Days		
TEMPORAL RESOLUTION (input needed for only Data Logger Measurements tab) Hourly Dativ Mean	30- 20-	mg_xvg. Tince Days	Holining_Avg. Set	an Days		tolinig_Avg. Filteel	i Days
DATE RANGE (Lakewatch)	10- Managara	man Munna	Muyumm	Munn	m	m	M
2019-02-01 to 2021-01-01 LAKEWATCH OBSERVATIONS	ot sale	eroland orienter	on sale	08152001	01-15-2821	0201-221	021 ^{52,021}

Phosphorus (ug/L)

○ Nitrogen (ug/L)

- Monitoring program through simulation and analyses
 - Inform monitoring based on oyster counts in previous years

- Monitoring program through simulation and analyses
- Pre-season power analyses to determine sampling effort

- Monitoring program through simulation and analyses
- Pre-season power analyses to determine sampling effort
- In-season assessments to update effort allocation and track progress

- Monitoring program through simulation and analyses
- Pre-season power analyses to determine sampling effort
- In-season assessments to update effort allocation and track progress
- End-of-season analyses to update learning

Large Scale: What are we learning?

- Big Bend intertidal oyster resources – declining rapidly
- 237% decline in counts since 2010
- Intertidal reefs are becoming more similar...

Large Scale: What are we learning?

- Big Bend intertidal oyster resources – declining rapidly
- 237% decline in counts since 2010
- Intertidal reefs are becoming more similar...
 - But more similar at LOWER NUMBER OF OYSTERS

(Moore et al. 2020)

Since 2010, distinct loss of highest density intertidal oyster bars

July 2018

July 2018

December 2018

July 2018

December 2018

July 2019

- Local effect of oysters growing on rocks? YES!
- But do these oysters persist?

- Oysters persist on restored reefs (so far)
- Similar density of oysters of rock reefs compared to wild reefs

 Benefits beyond the ribbon of rock?

- Benefits beyond the ribbon of rock?
- Not yet known...
 - My dissertation focuses on responses of oyster populations and water quality

Oyster abundance

Time

Seavey et al. 2011; Moore et al. 2020

Oyster abundance

Time

Seavey et al. 2011; Moore et al. 2020

Time

Oyster abundance

Seavey et al. 2011; Moore et al. 2020

- A ribbon of rock
 - LCR restoration is "large" for a restoration
 - But "small" compared to changes that are ongoing in the region
 - Sea-level rise
 - River discharge patterns

• Treat restoration projects as experiments, not solutions

- Treat restoration projects as experiments, not solutions
- Focus efforts on promoting resilience in existing wild reefs

End

- Tyler Steven Coleman
 <u>tyler.coleman@ufl.edu</u>
- Bill Pine <u>billpine@ufl.edu</u>

UF FLORIDA

IFAS

- Funding for restoration provided by National Fish and Wildlife Foundation
- Project co-PIs Leslie Sturmer, Peter Frederick, and Mike Allen
- Massive team effort Peter, Mel, Steve, Brad, Jennifer, Jamie, Joe, and many others