Assessing the Impact of Mangrove-Driven Acidification on Intertidal Oyster Reefs

Katherine Harris, Meghan Bradburn, Linda Walters University of Central Florida

The Indian River Lagoon

Habitat Ecosystem Services

Intertidal Oyster Reef (*Crassostrea virginica*)

Red Mangrove (*Rhizophora mangle*)

Climate Shift: Tropicalization

The poleward movement of tropical and subtropical species as minimum cold temperatures have increased over the past multiple decades

- Mangroves have expanded poleward and increased in historical ranges
- Mangrove expansion has reduced salt marsh area throughout the southeastern USA

Mangroves on Intertidal Oyster Reefs

- McClenachan et al. (2021) found in Mosquito Lagoon, FL mangrove area on intertidal oyster reefs has increased by 198% since 1984
- Encroachment is predominantly driven by red mangroves

Red Mangroves and Acidification

- Coastal water pH ~ 8.2
- Red mangroves acidify surrounding sediment to a pH of 6.5
- Mangroves create carbonic and sulfuric acids in the sediment

How will this impact oyster reefs?

- Acidity reduces availability of carbonate and leads to shell dissolution
- Oyster shell dissolution increases when shells are consistently exposed a pH of 7.17 or less

Research Questions

Q1: Do red mangroves cause acidification of oyster reef sediments by decreasing pore-water pH?

Q2: If yes, do red mangroves decrease sediment pH across the entire reef landscape?

Site Types

Oyster Reef with Red Mangroves (N = 5)

Pore-Water pH: Methods

Water from within the sediment (i.e., pore-water) was collected and tested for pH measures

Q1

- Sediment core was extracted and discarded
- Pore-water seeped into remaining hole

- Extracted pore-water and placed into a scintillation vial
- Pore-water was immediately tested for pH with a portable pH meter

Oyster Reefs with Mangroves:

- Large, established red mangrove stands
- Pore-water collected at the encroachment line

Q1

Pore-Water pH Across Site Types

Do red mangroves decrease sediment pH across the entire reef landscape?

Q2

Reef Landscape pH: Methods

- Grids of 40 random sampling points set up across reef landscape
- Pore-water was extracted from the 40 points
- Distance to the nearest mangrove was recorded for each random sampling point

Reef Landscape pH: Results

T-Test Results

Q2

Overall pH means between the two site types were not different (p-value = 0.317) **GLM Results**

Comparison	P-Value
Distance from Mangrove	0.155
Mangrove Height	< 0.001
Interaction (Distance : Height)	< 0.01

Interaction between distance from mangrove and mangrove height affected pore-water pH

Reef Landscape pH: Results

Effect of Red Mangrove Distance and Height on Pore-Water pH

Q2

Distance to Nearest Mangrove (m)

Discussion

- Results suggest red mangroves acidify oyster reef sediments
- Localized effect

• Small red mangroves have potential to drive acidification as they grow

- Red mangroves decrease pH as low as 6.86 on oyster reefs
- Potential to impact shell dissolution

Future Directions

- What is the extent of pH change in oyster reef sediments under adult, pioneer red mangroves?
- Do black mangroves (*Avicennia germinans*) on oyster reefs drive sediment acidification?
- Do red mangroves on oyster reefs cause oyster shell dissolution?

Acknowledgements

For Funding this Research:

NSF Grant #1617374

Grant-in-Aid of Research from Sigma Xi, The Scientific Research Society Florida Sea Grant Aylesworth Scholarship

For Supporting this Research:

Canaveral National Seashore

UCF Department of Biology

And thank you to Dr. Melinda Donnelly for statistical analysis advice, and to Dr. Paul Sacks, Tom Emge, and CEELAB students for fieldwork help.

Thank you!