Assess the effects of mosquito control pesticides on non-targeted organisms in the Florida Keys National Marine Sanctuary.

Richard Pierce, P.I.,
Mote Marine Laboratory, Ecotoxicology
Project manager, field monitoring, pesticide analysis

Kimberly Ritchie, Co-PI
Mote TRL, Marine Microbiology
Coral larvae toxicity studies

Thomas Matthews, Co-PI,
FL Fish & Wildlife Research Institute
Lobster larvae toxicity studies & Field Sampling
1. To determine if applications of mosquito control pesticides in the FL Keys result in toxic effects to NMS organisms.

2. Work with stakeholders to assess the risk and develop appropriate response strategies as needed to maintain mosquito control while reducing the risk to the NMS.

- **Permethrin**: Applied as Permanone 30-30 (30% Permethrin, 30% Piperonyl butoxide); PM Ground ULV

- **Malathion**: Applied as Fyfanon ULV Mosquito, 96.5% Malathion; PM ground ULV

- **Naled**: Applied as Dibrom Concentrate, 87.4% naled; AM Aerial ULV

Coral larvae: Porities asteorites, Spiny Lobster ,Puerulus
Application of Results

Results will provide FL Keys NMS Resource Managers and FL Keys Mosquito Control District Managers with empirical data to:

- Preserve and enhance the living resources of the National Marine Sanctuary,

- While maintaining adequate mosquito control to protect the public health and economic well being of the FL Keys
Unique Public-Private Partnership
Including Stakeholders from Federal, State & Local Agencies
and Mote, an Independent Non-profit Research Institution
Shared Project Support

Funding/Collaborators:

<table>
<thead>
<tr>
<th></th>
<th>Year-1</th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>US EPA WQPP, FL Keys NMS;</td>
<td>$70,000</td>
<td>$30,000 ($100,000 max)</td>
</tr>
<tr>
<td>FL Keys Mosquito Control Dist.;</td>
<td>$25,000</td>
<td>$25,000 (pending)</td>
</tr>
<tr>
<td>Levi Research Fund (Mote);</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
</tbody>
</table>

Project Budget

<table>
<thead>
<tr>
<th></th>
<th>Year-1</th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$120,000</td>
<td>$80,000 ($200,000/ 2 yrs)</td>
</tr>
</tbody>
</table>

In-Kind Support

- **NOAA-National Marine Sanctuary;** In-Kind Support (field & results)
- **FL FWRI field & lobster toxicity;** In-Kind Support ($33,670)
- **Mote, Field monit. & Coral toxicity;** In-kind Support (~$33,000)

Additional funds sought to:

- a) expand monitoring residential pesticide use,
- b) provide additional field monitoring of pesticide applications, and
- c) test synergistic effects of multiple pesticide exposures.

<table>
<thead>
<tr>
<th></th>
<th>Year-1</th>
<th>Year-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$25,000</td>
<td>$30,000</td>
</tr>
</tbody>
</table>
June 16-18, and July 28-29, 1998
- Evening ground ULV Permanone
- Morning Aerial ULV Dibrom

September 22-23, 1998
- Evening ground ULV Permanone
- Morning: no Dibrom, Hurricane Georges Evacuation
Pesticide Monitoring Stations:
B = Bay Side
A = Ocean Side

Samples Collected:
- Deposition on filter
- Surface water
- Mid-depth water
- Sediment

Samples Collected:
- 1Km
- 1Km
June 16, Permethrin, evening
June 17, naled, morning

Permethrin: Drift Deposition of on Filter Pads @ 2-4 hours after application None detected in water

Naled, DDVP: in Mid-depth Water @ 2 to 4 hr = tidal transport

<table>
<thead>
<tr>
<th>Cis+trans Permethrin</th>
<th>FL Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrations (µg/m²)</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Points</td>
<td>B1</td>
</tr>
</tbody>
</table>

DDVP ug/L; naled ug/L

Wind Direction

Atlantic

Key Largo

Rock Harbor
Permethrin Application Evening, September 22, 1998

Deposition of Permethrin on filter pads, 2-4 hours after application - Added Canal Samples

Permethrin ug/L In Canal Surface Water

Cis+trans Permethrin

Concentrations (µg/m²)
- < 0.2
- 0.2 - 5
- 5 - 10
- 10 - 15
- > 15

Map showing locations A1 to B9 with varying concentrations of Permethrin.
Acute Toxicity (96 hr LC-50) of Permethrin, Dibrom, DDVP and Malathion to Mysidopsis bahia, and Penaeus duoarum. Persistence (1/2 life) and solubility in seawater.

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>96 hr LC-50 ug/L (ppb)</th>
<th>Half Life days</th>
<th>Solubility mg/L (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permethrin</td>
<td>.02-.1</td>
<td>1-3</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tech.~1/3 cis, 2/3 trans; toxicity cis>>>trans) + PBO</td>
</tr>
<tr>
<td>Dibrom</td>
<td>4.7-8.8</td>
<td>< 1</td>
<td>2,000</td>
</tr>
<tr>
<td>Malathion</td>
<td>2.2</td>
<td>2-4</td>
<td>130</td>
</tr>
</tbody>
</table>

References: Schimmel et al., 1983; Cripe, 1994; Mason and Wendel, 2010; Faria et al., 2010
CONCLUSIONS

Permethrin (cis+trans):
- Observed on filters, leeward side of Keys => Aerial drift into NMS
- Acutely Hazardous concentrations observed in off-shore water
- Hazardous concentrations indicated for permethrin in canals.
- Need toxicity studies with technical product to verify hazard

Dibrom/DDVP:
- None detected on filters or surface water
- Low concentrations detected in mid-depth water out from canal systems, indicates tidal transport from canals.
- Acutely Hazardous concentrations were detected in surface or mid-depth water
- Canal monitoring cancelled due to hurricane Georges
Questions that need to be Addressed

Do pesticides remain/degrade in canals, or are they transported out into the NMS?

If pesticides are transported by aerial drift and/or tidal transport to the NMS, are they in significant concentrations to cause lethal and sublethal effects (development, reproduction)?

What is the contribution of residential pesticide applications to pesticide loading in the NMS?

If toxicity is indicated, what application strategies can be implemented to maintain adequate mosquito control while reducing the risk to marine organisms?
The New
Mote EPA-WQPP FL Keys NMS
Study Objectives 2012 to 2014

Monitor ground and aerial applications of mosquito adulticides (baited, permethrin and malathion), to assess transport, distribution, concentration and persistence in NMS.

Measure the toxic effects of environmental concentrations of the adulticides to early life stages of coral and Spiny lobster through critical stages of metamorphosis that occur in near-shore NMS.

Assess the contribution of residential pesticide applications to pesticide input to near-shore NMS habitat.

Work with EPA, NMS, FL FWRI and the FKMCD to evaluate potential impacts and develop appropriate response strategies, as needed.
Field Monitoring Protocol

Monitor pesticide concentrations in water samples from two possible sites, two applications each pesticide

1. Snake Creek @ Windley / Plantation Key
2. Key Largo (as above)

- Pre-application 9 to 12 sites
- 2 to 3 hrs post application (All pesticides)
- 6 to 8 hrs post application (naled only)
- 12 to 18 hrs post application (Permethrin & Malathion)

Water sample collections by:
FL FWRI, NOAA-NMS & Mote

Pesticide analysis by: Mote
Snake Creek Monitoring Sites

Ebb Tide

Pre-Application

Post-Application
Larvae of the scleractinian coral (*P. astreoides*) will be exposed to environmentally relevant concentrations of the technical formulations of each pesticide. Toxicity end points will include:

- **Acute toxicity;** LC-50, 96 hr.
- **Sublethal toxicity;** Larval metamorphosis from planula to primary polyp (primary septa) development.
Spiny lobster (*Panulirus argus*) will be exposed to environmentally relevant concentrations of technical formulations of each pesticide. Toxicity end points will include:

- **Acute toxicity, LC-50, 96 hr.**

- **Sublethal toxicity for *pueruli* and *first-stage juveniles* through critical stages of metamorphosis**
Residential Pesticide applications

Monitor Drift and runoff from:

● Pesticide misting systems: (This Study)

● Lawn maintenance: (Future Study)
Common Goal for All Stakeholders:

- preserve and enhance the living resources of the National Marine Sanctuary

- while maintaining adequate mosquito control to protect the public health and economic well being of the FL Keys.