ArcGIS REST Services Directory Login | Get Token
JSON

Layer: Coral_Reef_Ecosystem_Regions (ID: 162)

Parent Layer: 12LAYERPACKAGE7

Name: Coral_Reef_Ecosystem_Regions

Display Field: Name

Type: Feature Layer

Geometry Type: esriGeometryPolyline

Description: Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar regional analyses elsewhere.

Copyright Text: Walker BK (2012) Spatial Analyses of Benthic Habitats to Define Coral Reef Ecosystem Regions and Potential Biogeographic Boundaries along a

Default Visibility: false

MaxRecordCount: 1000

Supported Query Formats: JSON, geoJSON

Min Scale: 0

Max Scale: 0

Supports Advanced Queries: true

Supports Statistics: true

Has Labels: false

Can Modify Layer: false

Can Scale Symbols: false

Use Standardized Queries: true

Supports Datum Transformation: true

Extent:
Drawing Info: Advanced Query Capabilities:
HasZ: false

HasM: false

Has Attachments: false

HTML Popup Type: esriServerHTMLPopupTypeAsHTMLText

Type ID Field: null

Fields:
Supported Operations:   Query   Query Attachments   Generate Renderer   Return Updates

  Iteminfo   Thumbnail   Metadata